

Comune di Oristano

Provincia di Oristano

Interventi di mitigazione del rischio idrogeologico nel Comune di Oristano - Frazione di Silì

Progetto di fattibilità tecnico economica

Studio di compatibilità idraulica Relazione

DATA:
Aprile 2020

Aggiornamento:
SCALA:

Allegato G

Il Sindaco Dott. Ing. Andrea Lutzu

Il Dirigente del Settore Lavori pubblici e manutenzioni Dott. Ing. Roberto Sanna I tecnici incaricati Dott. Ing. Fabrizio Staffa

Dott. Geol. Fausto Pani

Collaboratori Dott. Ing. Martina Secci Dott. Ing. Fabrizio Boi

Ļ

INTERVENTI DI MITIGAZIONE DEL RISCHIO IDROGEOLOGICO NEL COMUNE DI ORISTANO - FRAZIONE DI SILÌ

PROGETTO DI FATTIBILITA' TECNICO ECONOMICA

Allegato G – Studio di compatibilità idraulica Relazione

INDICE

1	Prem	essa	3
	1.1	Inquadramento generale degli interventi in progetto	4
	1.2	Stato dei luoghi	6
	1.3	Interventi previsti in progetto.	9
2	Anali	isi idrologica ed idraulica	10
	2.1	Analisi idrologica per la determinazione della portata di piena	10
	2.1.1	Metodologie di calcolo delle portate di piena	10
	2.1.2	Metodi indiretti	10
	2.1.3	Determinazione del tempo di corrivazione	11
	2.1.4	Determinazione dell'altezza di pioggia critica	11
	2.1.5	Modello TCEV	11
	2.1.6	Coefficiente di riduzione areale	16
	2.1.7	Coefficiente di deflusso	16
	2.2	Analisi idraulica	19
3	Deter	minazione e caratterizzazione dei bacini idrografici drenanti l'abitato di Silì	20
	3.1	Studio idrologico del bacino a monte del rilevato ferroviario	22
	3.1.1	Morfologia del sottobacino	23
	3.1.2	Risultati dello studio idrologico	25
	3.2	Studio idrologico del bacino drenante la porzione dell'abitato di Silì a valle del rileva 32	to ferroviario
	3.2.1	Morfologia del sottobacino	32
	3.2.2	Risultati dello studio idrologico	33
4	VER	IFICA IDRAULICA	40
	4.1	Portate e volumi utilizzati per la verifica idraulica	40
	4.2	Laminazione delle piene Tr dei 50 anni	42
	4.3	Laminazione delle piene tr 100 anni	47
	4.4	Laminazione delle piene tr 200 anni	53
	4.5	Risultati della verifica idraulica	59
	4.5.1	Eventi con tempo di ritorno dei 50 anni	59
	4.5.2	Eventi con tempo di ritorno dei 100 anni	59
	4.5.3	Eventi con tempo di ritorno dei 200 anni.	59
5	Comp	patibilità degli interventi in progetto e mitigazione del rischio idraulico	60
	5.1	Mitigazione del rischio idraulico e valutazione del rischio residuo	60
	5.2	Compatibilità degli interventi in progetto e considerazioni conclusive.	63

1 PREMESSA

Il presente studio di compatibilità idraulica ai sensi ai sensi dell'art. 24 delle Norme di Attuazione del Piano di Assetto Idrogeologico (di seguito NTA PAI) approvate con decreto del Presidente della Regione n. 35 del 27/04/2018 (BURAS n. 23 Parte I e II del 03/05/2018) è redatto nell'ambito degli "Interventi di mitigazione del Rischio Idrogeologico nel Comune di Oristano - Frazione di Silì" sono realizzati in applicazione del Piano Stralcio per l'Assetto idrogeologico che prevede per le aree a Pericolosità Idraulica l'individuazione e lo sviluppo un sistema di interventi per ridurre o eliminare le situazioni di pericolo e le condizioni di rischio, infatti nell'ambito dello "Studio di compatibilità idraulica e di compatibilità geologica e geotecnica ai sensi dell'art. 8 delle NA del PAI relativo a tutto il territorio comunale" del Comune di Oristano approvate con Delibera di Comitato Istituzionale dell'Autorità di Bacino Regionale n. 2 del 03.07.2018, sono state individuate delle aree a ampie pericolosità idraulica anche molto elevata che interessano una buona porzione dell'abitato di Silì.

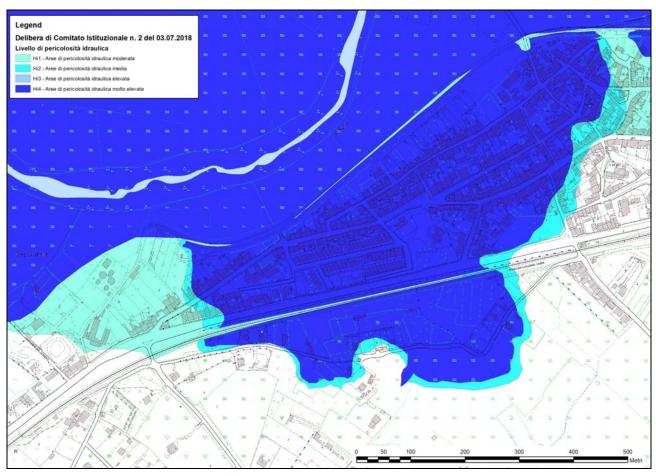


Figura 1.1: aree a pericolosità idraulica individuate nell'ambito dello "Studio di compatibilità idraulica e di compatibilità geologica e geotecnica ai sensi dell'art. 8 delle NA del PAI relativo a tutto il territorio comunale"

Lo studio di compatibilità analizza nel dettaglio gli effetti sull'assetto idrogeologico dell'area in studio degli interventi previsti nell'ambito del presente "Progetto di Fattibilità Tecnico ed Economica", in particolare si analizzeranno gli effetti sulla pericolosità e sul rischio idraulico connesso alla realizzazione degli interventi di mitigazione.

1.1 Inquadramento generale degli interventi in progetto

Gli interventi in progetto riguardano la mitigazione del rischio idrogeologico nella Frazione di Silì, in comune di Oristano. In particolare gli interventi in progetto sono inquadrati cartograficamente nella Tavoletta 528 sez I "Oristano Nord" della cartografia IGM 1:25000, e nel foglio n°528080 delle Carta Tecnica Regionale "Oristano".

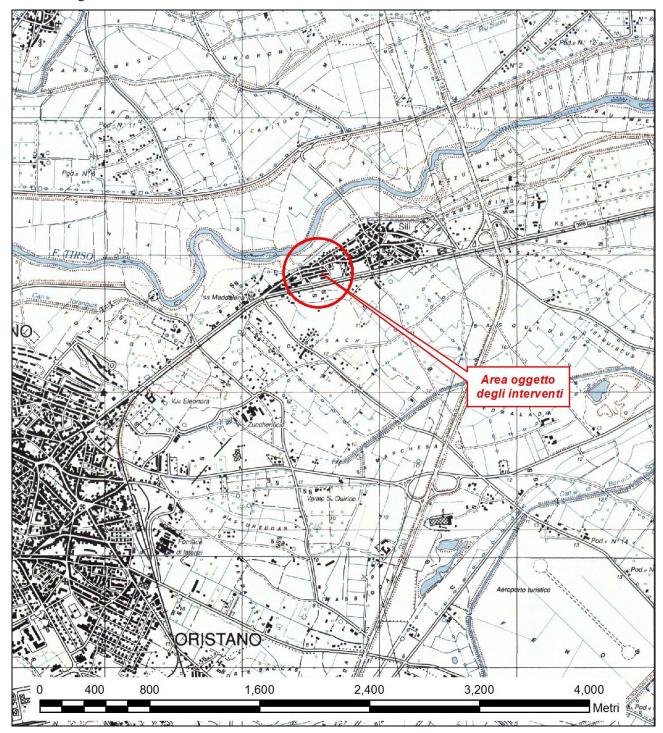


Figura 1.2: area oggetto degli interventi in progetto su cartografia IGM 1:25.000

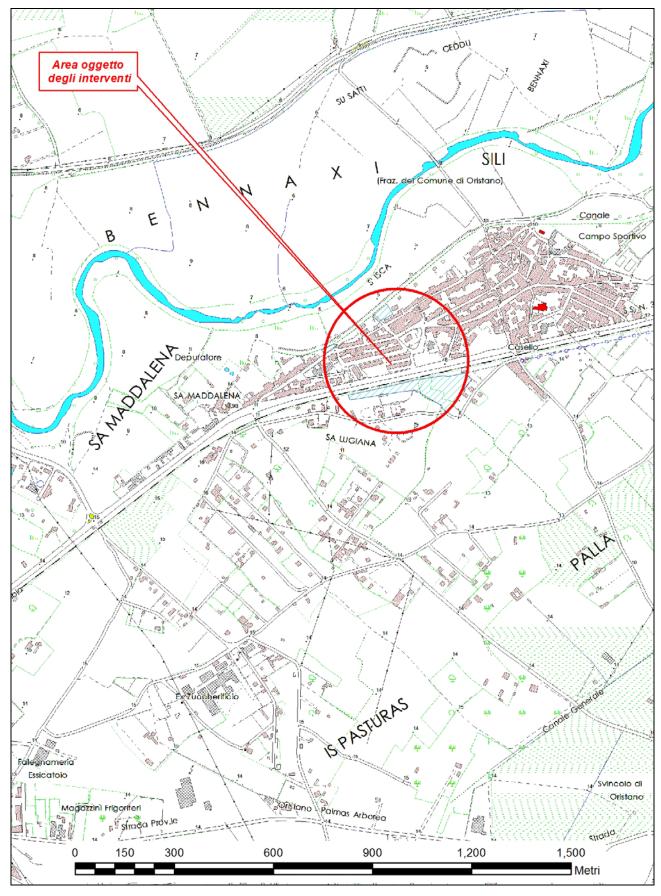


Figura 1.3: area oggetto degli interventi in progetto su cartografia DBGT10k

1.2 Stato dei luoghi

L'idrografia superficiale dell'area è stata profondamente modificata dalle opere antropiche, nel presente paragrafo si descrivono brevemente le opere che, allo stato attuale, direttamente o indirettamente hanno condizionato l'idrografia dell'area, come l'argine sinistro del Fiume Tirso, il Canale San Giovanni (Canale di Bonifica Pauli Uffiziali sulla CTR storica), il rilevato ferroviario della Ferrovia Cagliari-Olbia, ed infine i canali di dreno del Consorzio di Bonifica, che di fatto rappresentano gli unici elementi dell'idrografia superficiale presenti nell'area in studio.

La realizzazione degli argini del Fiume Tirso per il tratto oggetto del presente studio avvenuta tra gli anni '30 del secolo scorso per la sinistra idraulica e la fine degli anni '40 per la destra idraulica, ha protetto l'abitato di Silì dalle piene del Tirso, ma, contemporaneamente, impedisce ai piccoli bacini e alle superfici scolanti delle aree limitrofe all'alveo del fiume di poter defluire naturalmente verso il corso d'acqua principale. Originariamente il recapito dei deflussi dell'area era in parte il Tirso e in parte il mare; allo stato attuale, l'arginatura sinistra del fiume condiziona i deflussi affidandoli ad una vasta rete di dreno che ha nel canale Torangius il suo elemento di primaria importanza. Nella configurazione attuale, le acque che vanno in parte a ruscellare, per quanto consentito dall'esiguo gradiente verso nord, vengono quindi intercettate dal canale Torangius, (parte terminale del Canale San Giovanni) che successivamente tende consegnare i deflussi nel porto di Oristano.

Il recapito delle portate di piena del sistema drenante l'abitato di Silì, oggetto degli interventi in progetto, è il canale San Giovanni, (denominato in vari modi, Canale Pauli Uffiziali sulla CTR storica, Canale Torangius nel tratto a valle). La sezione tipica del canale San Giovanni a monte del controfosso di Silì è costituita da un alveo di magra di sezione trapezia rivestito in calcestruzzo e da un alveo di piena con savanelle in terra e pareti trapezie sempre in terra. In corrispondenza dell'altura della Maddalena il canale è costituito da un cunicolo interrato in mattoni di larghezza 1,00 m, altezza 2,00 m e lunghezza di oltre un chilometro. La copertura è realizzata con una voltina a botte e la copertura di terra in alcuni tratti è anche di alcuni metri.

La sezione tipica del canale San Giovanni a valle del contraffosso di Silì è costituita da un alveo di magra di sezione trapezia rivestito in calcestruzzo e da un alveo di piena con savanelle in terra e pareti trapezie sempre in terra. In particolare la sezione di magra trapezia rivestita in calcestruzzo in questo tratto ha base 50 cm e sponde con scarpa 1/1 e altezza 50 cm. La sezione di piena ha una savanella della larghezza di 50 cm per parte in terra e sponde sempre in terra con scarpa 1/1 e altezza variabile in funzione dell'orografia dei terreni attraversati.

Nel tratto tombato in prossimità dell'area oggetto degli interventi in progetto la sezione è costituita da uno scatolare in cemento armato delle dimensioni nette 250 cm di base e 130 cm di altezza. Di sezione analoga sono anche dotati alcuni ponticelli presenti.

Figura 4: Canale San Giovanni a monte del tratto tombato in corrispondenza dell'abitato di Silì.

Come si evince dall'analisi idraulica sviluppata nel presente progetto, il bacino a monte dell'altura della Maddalena, che rappresenta la maggiore area scolante afferente al canale San Giovanni, ha un vincolo rappresentato appunto dal cunicolo che attraversa l'altura della Maddalena.

L'ultimo tratto del percorso del Canale di San Giovanni è caratterizzato dalle interazioni con il canale perimetrale di Santa Giusta; il canale perimetrale affranca lo specchio acqueo dagli apporti provenienti dalle aree esterne, evitando quindi eventuali contaminazioni con le sostanze provenienti dai bacini afferenti.

In particolare, l'immissione del San Giovanni nello stagno di Santa Giusta è impedita da una traversa che dirotta i deflussi ordinari lungo il canale circondariale; quest'ultimo, proseguendo verso valle, attraversa mediante due sifoni i due bracci del canale di Pesaria per poi riversarsi all'interno del porto industriale.

Un'altra opera che ha alterato profondamente l'idrografia superficiale dell'area in studio e in particolare l'area oggetto degli interventi in progetto è il rilevato ferroviario che di fatto ostacola il regolare deflusso delle acque verso il canale San Giovanni, attualmente il deflusso avviene tramite due attraversamenti in corrispondenza dei canali di dreno artificiali del consorzio di bonifica.

Figura 5: Rilevato e attraversamento ferroviario a monte dell'abitato di Silì in corrispondenza del canale di dreno est

A monte e a valle del rilevato ferroviario nel bacino in studio di fatto l'idrografia superficiale è stata profondamente condizionata dall'opera antropica e le acque meteoriche vengono convogliate verso il ricettore finale (il Canale San Giovanni), attraverso le canalette del Consorzio di Bonifica.

Queste canalette hanno per di più sezione trapezia costante altezza, larghezza alla base di 50 cm e sponde inclinate a 45 gradi alte circa 50 cm.

Fondo e sponde sono rivestite in cls, anche se in alcuni tratti risultano ammalorate o danneggiate da interventi antropici, dalla presenza di vegetazione invasiva, essenzialmente ceppaie di Eucaliptus, o dal fisiologico ammaloramento delle opere in cls.

Figura 6: Canalette di dreno in cls immediatamente a monte dell'area oggetto degli interventi in progetto

1.3 Interventi previsti in progetto.

Gli interventi previsti in progetto in estrema sintesi, prevedono la realizzazione di una vasca di laminazione a monte del rilevato ferroviario, illustrata nella *Tavola 6.1: Vasca di laminazione monte*, e della realizzazione di due vasche a ridosso del canale San Giovanni in corrispondenza dell'arrivo dei due canali di dreno, che verranno manutenuti ed eventualmente adeguati nell'ambito del presente progetto.

Il presente progetto prevede di non intervenire sui tratti tombati delle canalette del consorzio, ma di garantire il trasferimento delle portate laminate dalla vasca di monte verso valle attraverso due tubazioni in cls DN 800mm posate parallelamente alle canalette esistenti, che in condizioni di funzionamento ordinario lavorerebbero "a canaletta", ma in occasione di eventi eccezionali potrebbero anche funzionare a bocca piena o al limite in pressione senza particolari disagi o criticità.

Prima di essere emesse sul Canale San Giovanni dette portate verrebbero immesse in due ampie vasche in cls dotate sia di soglia sfiorante che di soglia di fondo (illustrate nella *Tavola 6.2.2: Vasca valle canale ovest -ipotesi soglia a battente* e nella *Tavola 6.3.2: Vasca valle canale est -ipotesi soglia a battente*, allegate al presente Progetto di fattibilità Tecnica ed economica), ed in grado di funzionare completamente a gravità.

Questa soluzione permetterebbe di smaltire in sicurezza le portate relative ai tempi di ritorno dei 50 e anni e andrebbe in crisi per un breve lasso di tempo (pochi minuti) in concomitanza del picco degli eventi centennali e duecentennali.

2 ANALISI IDROLOGICA ED IDRAULICA

2.1 Analisi idrologica per la determinazione della portata di piena

2.1.1 Metodologie di calcolo delle portate di piena

Nel caso della Sardegna, la consistenza dei dati di portata disponibili, e la necessità di stimarne i valori in sezioni non osservate, impone di valutare le portate di piena ad assegnata frequenza mediante il confronto critico dei risultati ottenuti dalle metodologie indirette.

2.1.2 Metodi indiretti

La poca disponibilità di osservazioni storiche di portata, fa' si che non si possa prescindere dall'uso di procedure indirette per la valutazione della portata di piena. Tali metodologie stimano la portata al colmo a partire dalla precipitazione nell'ipotesi che la frequenza di accadimento di questa ultima caratterizzi quella della portata al colmo.

Per la stima delle portate di piena si fa riferimento al modello cinematico (o razionale) che si basa sulle seguenti ipotesi fondamentali:

- la pioggia critica è quella che ha durata pari al tempo di corrivazione del bacino;
- la precipitazione si suppone di intensità costante per tutta la durata dell'evento;
- il tempo di ritorno della portata è pari a quello della pioggia critica;
- la trasformazione della piena è dovuta esclusivamente ad un fenomeno di trasferimento della massa liquida.

La portata di massima piena che scaturisce dalle suddette ipotesi è fornita dalla relazione:

$$Q = \frac{1}{3.6} \cdot \psi \cdot \frac{h_{T_c}}{T_c} \cdot S \quad [\text{m}^3/\text{s}]$$

dove:

 T_c = tempo di corrivazione [ore]

 $S = \text{superficie del bacino } [\text{km}^2]$

 h_{Tc} = pioggia critica di durata Tc [mm]

 Ψ = coefficiente di deflusso.

2.1.3 Determinazione del tempo di corrivazione

Per la determinazione del tempo di corrivazione T_c sono state utilizzate le formule sottoelencate:

- Soil Conservation Service:
$$T_c = 0.00227 * 1000 L^{0.8} \cdot [(1000 / CN) - 9)]^{0.7} i_{VERSANTE}^{0.5}$$
 [ore]

- Formule di Ventura:
$$T_c = 0.1272 \left(\frac{S}{i_{m}}\right)^{\frac{1}{2}}$$
 [ore]

Formula di Giandotti:
$$T_c = \frac{4\sqrt{S} + 1.5L}{0.8\sqrt{(H_m - H_0)}}$$
 [ore]

- Formula di Viparelli:
$$T_c = \frac{L}{3.6V}$$
 [ore]

(dove V è la velocità media di scorrimento ed è stata assunta pari a 1 m/s)

Formula di Pasini:
$$T_c = \frac{0.108(SL)^{\frac{1}{3}}}{\sqrt{i_m}}$$
 [ore]

Formula VAPI
$$T_c = 0.212S^{0.231} \left(\frac{H_m}{i_m}\right)^{0.289}$$
 [ore]

2.1.4 Determinazione dell'altezza di pioggia critica

Per quanto riguarda la determinazione dell'altezza di pioggia critica lorda h_{Tc} da utilizzare per l'applicazione della formula razionale si fa usualmente ricorso alle curve di possibilità pluviometrica che caratterizzano il regime pluviometrico sardo. Tali curve sono state ricavate utilizzando la distribuzione TCEV.

2.1.5 Modello TCEV

Recenti studi per la Sardegna mostrano che il modello probabilistico TCEV ben interpreta le caratteristiche di frequenza delle serie storiche, motivo per il quale è stato adottato per la determinazione delle curve di possibilità pluviometrica nella procedura VAPI.

La pioggia lorda h viene ricavata dalla nota formula:

$$h(T_p) = a \cdot T_p^n$$

dove:

$$\begin{cases} a = a_1 \cdot a_2 \\ n = n_1 + n_2 \end{cases}$$

quindi
$$h(T_p) = a_1 \cdot a_2 \cdot T_p^{n_1 + n_2} = \mu(T_p) \cdot k(T_p)$$

dove $\mu(T_p) = a_1 \cdot T_p^{n_1}$ è detta Pioggia Indice di durata T_p ed è data dalla media dei massimi annui delle piogge di durata T_p e $k(T_p) = a_2 \cdot T_p^{n_2}$ è detto Coefficiente di Crescita.

SZO	Durata ≤ 1 ora	Durata >1 ora
520	a=0.46420+1.0376*Log (T)	a=0.46420+1.0376*Log (T)
Sottozona 1		
	$n=-0.18488+0.22960*Log(T)-3.3216*10^{-2}*Log^{2}(T)$	n=-1.0469*10 ⁻² -7.8505*10 ⁻³ Log (T)
	a=0.43797+1.0890*Log (T)	a=0.43797+1.0890*Log (T)
Sottozona 2	n=-0.18722+0.24862*Log(T)- 3.36305 *10 ⁻² *Log ² (T)	n=-6.3887*10 ⁻³ -4.5420*10 ⁻³ * Log (T)
	a=0.40926+1.1441*Log (T)	a=0.40926+1.1441*Log (T)
Sottozona 3	n=-0.19060+0.264438*Log(T)- 3.8969 *10 ⁻² *Log ² (T)	n=1.4929*10 ⁻² +7.1973*10 ⁻³ * Log (T)

Tabella 2-1: parametri della curva di possibilità climatica per Tr maggiori di 10 anni¹

I valori di a_1 e n_1 si determinano in funzione della pioggia indice giornaliera μ_g data dalla media dei massimi annui di precipitazione giornaliera; tali valori sono stati calcolati per diverse zone della Sardegna secondo la carta delle Isoiete.

$$a_1 = \frac{\mu_g}{0.886 \cdot 24^{n_1}}$$

$$n_1 = -0.493 + 0.476 \cdot \log \mu_g$$

Dalla curva delle Isoiete Figura 2.1 si determina il valore di μ_g , da cui si ricava a_I e n_I e di conseguenza $\mu(Tp)$.

Per quanto riguarda a_2 e n_2 si determinano con relazioni differenti per tempi di ritorno T_R maggiori o minori di 10 anni, per durate di pioggia Tp maggiori o minori di 1 ora e a seconda delle 3 sottozone omogenee (SZO) in cui è stata suddivisa la Sardegna². Il PAI consiglia i valori della tabella sopra riportata, da cui per i bacini dei corsi d'acqua che interessano il territorio dell'abitato di Silì, come si può vedere nella Figura 2.2, ricadono interamente nella SZO 1, dalla tabella sopra riportata le espressioni di a_2 e n_2 per Tp, che nel metodo cinematico è posto pari al Tc, maggiore di 1 ora sono:

$$\begin{aligned} a_2 &= 0,46420 + 1,0376 \, \log \, T_R \\ n_2 &= -1,0469 \cdot 10^{-2} - 7,8505 \cdot 10^{-3} \cdot \log \, T_R \\ \text{mentre per Tp minori di 1 ora sono:} \\ a_2 &= 0,46420 + 1,0376 \, \log \, T_R \\ n_2 &= -0,18488 + 0,22960 \cdot \log \, T_R - 3,3216 \cdot 10^{-2} \cdot (\log \, T_R)^2 \end{aligned}$$

¹ LINEE GUIDA: Attività di coordinamento e di perimetrazione delle aree a rischio idraulico e idraulico e geomorfologico e delle relative misure di salvaguardia "DL 180 e Legge 267 del 3-08-1998"

²(Vedasi Deidda e Piga, curve di possibilità pluviometrica basate sul modello TCEV, Informazione 81, pagg.9-14, Cagliari 1998).

Il Piano Stralcio Fasce Fluviali propone, invece, le formule riportate nella figura seguente, che sono state estrapolate dall'elaborato "STUDI, INDAGINI, ELABORAZIONI ATTINENTI ALL'INGEGNERIA INTEGRATA, NECESSARI ALLA REDAZIONE DELLO STUDIO DENOMINATO PROGETTO DI PIANO STRALCIO DELLE FASCE FLUVIALI (PSFF) - METODOLOGIE DI ANALISI".

```
per tempi di ritorno T <= 10 ANNI
a)
SZO 1 a_2 = 0.66105 + 0.85994 Log_{10} T;
            n_2 = -1.3558 \cdot 10^{-4} - 1.3660 \cdot 10^{-2} \cdot Log_{10} \cdot T;
SZO 2 a<sub>2</sub> = 0,64767 + 0,89360 Log<sub>10</sub> T;
            n_2 = -6.0189 \cdot 10^{-3} + 3.2950 \cdot 10^{-4} \cdot Log_{10} \cdot T:
SZO 3 a<sub>2</sub> = 0.62408 + 0.95234 Log<sub>10</sub> T;
            n_2 = -2,5392 \cdot 10^{-2} + 4,7188 \cdot 10^{-2} \log_{10} T:
b)
         per tempi di ritorno T > 10 ANNI
SZO 1 a_2 = 0.46378 + 1.0386 Log_{10} T
            n_2 = -0.18449 + 0.23032 \text{ Log}_{10} \text{ T} - 3.3330 \cdot 10^{-2} \left( \text{Log}_{10} \text{ T} \right)^2 (per \tau \le 1 ora)
            n_2 = -1.0563 \cdot 10^{-2} - 7.9034 \cdot 10^{-3} \text{ Log}_{10} \text{ T}
                                                                                                       (per \tau >= 1 ora)
SZO 2 a<sub>2</sub> = 0,44182 + 1,0817 Log<sub>10</sub> T
            n_2 = -0.18676 + 0.24310 \text{ Log}_{10} \text{ T} - 3.5453 \cdot 10^{-2} \left( \text{Log}_{10} \text{ T} \right)^2 (per \tau \le 1 ora)
            n_2 = -5,6593 \ 10^{-3} - 4,0872 \ 10^{-3} \ Log_{10} \ T
                                                                                                       (per \tau>= 1 ora)
SZO 3 a<sub>2</sub> = 0,41273 + 1,1370 Log<sub>10</sub> T
           n_2 = -0.19055 + 0.25937 \log_{10} T - 3.8160 \cdot 10^{-2} (\log_{10} T)^2
                                                                                                        (per \tau \le 1 ora)
           n_2 = 1,5878 \cdot 10^{-2} + 7,6250 \cdot 10^{-3} \log_{10} T
                                                                                                        (per \tau >= 1 ora)
```

Tabella 2-2: parametri della curva di possibilità climatica per il PSFF

Quindi per i bacini dei corsi d'acqua che interessano il territorio di Silì, come detto in precedenza ricadenti nella SZO 1, per T_R <10 anni, si ha:

```
\begin{aligned} a2 &= 0,46378 + 1,0386 \ Log_{10} \ T_R \\ n2 &= -1,0563 \ 10^{-2} - 7,9034 \ 10^{-3} \ Log_{10} \ T_R \end{aligned} \qquad \text{per } T_p = T_c \ \text{maggiore di 1 ora} \\ n2 &= -0,18449 + 0,23032 \ Log_{10} \ T_R - 3,3330 \ 10^{-2} \ (Log_{10} \ T_R)^2 \end{aligned} \qquad \text{per } T_p = T_c \ \text{minore di 1 ora}
```

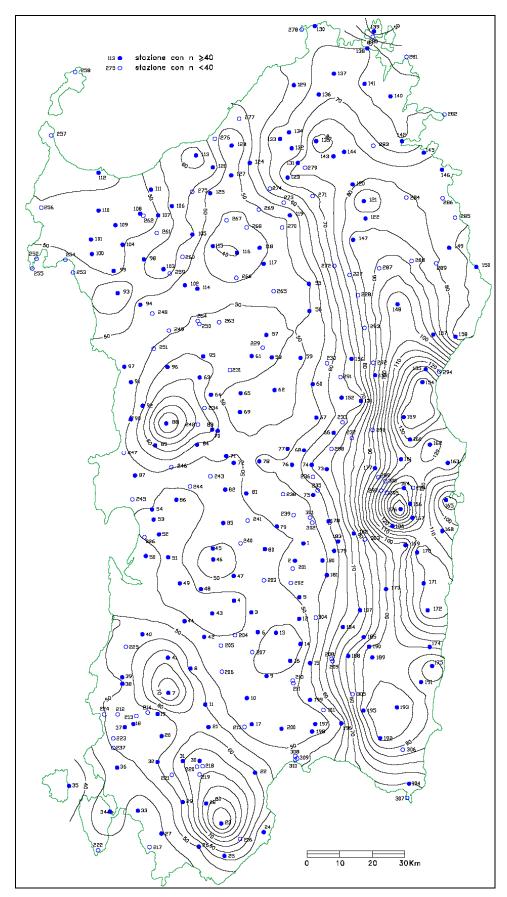



Figura 2.1: Distribuzione spaziale dell'altezza di pioggia giornaliera (da Deidda ed Al., Quad. Ricerca dell'Università di Cagliari, 1997)

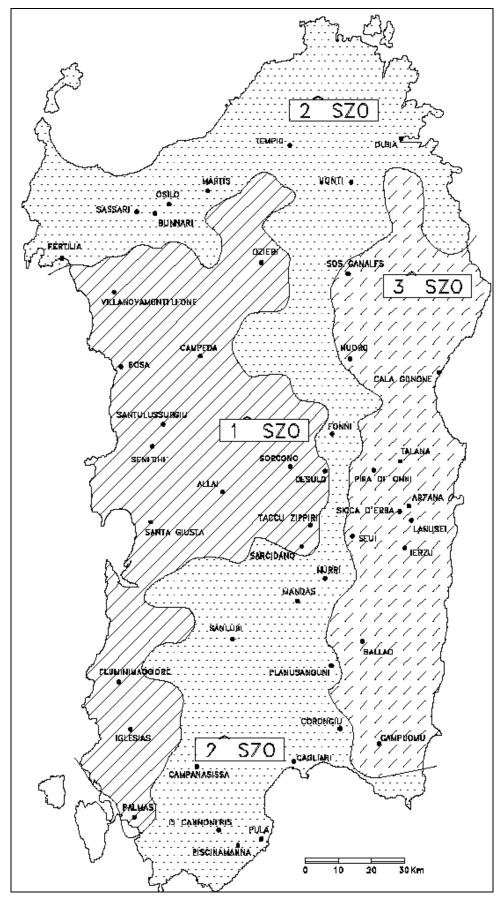


Figura 2.2: Carta delle Sottozone Omogenee per le piogge brevi e intense in Sardegna. (da Deidda ed AL., 1993)

2.1.6 Coefficiente di riduzione areale

Quando si ricavano le altezze h di pioggia dalle curve di possibilità pluviometrica si suppone che tali valori corrispondano al centro di scroscio che viene individuato per ipotesi nel punto in cui vi è la stazione di misura.

Poi si considera tale pioggia uniformemente distribuita su tutto il bacino. In realtà la pioggia diminuisce allontanandosi dal centro di scroscio, quindi considerare quella stessa intensità di pioggia costante su tutto il bacino porta ad un errore per eccesso.

Per tenere conto di ciò si è deciso di applicare alle altezze di pioggia ottenute un coefficiente di riduzione areale che è espresso da diverse formulazioni tra cui quella, utilizzata dal VAPI Sardegna, che fa riferimento al Flood Studies Report del Wallingford Institute (UK 1977):

$$ARF = 1 - f_1 \cdot T_p^{-f_2}$$

dove:

$$f_1 = 0.0394 \cdot S^{0.354}$$

 $f_2 = 0.4 - 0.0208 \cdot \ln(4.6 - \ln S)$ per S < 20 km²
 $f_2 = 0.4 - 0.003832 \cdot \ln(4.6 - \ln S)$ per S > 20 km²

Per il coefficiente ARF si osserva che:

diminuisce all'aumentare dell'area S;

aumenta all'aumentare della durata di pioggia T_p.

In base a tale coefficiente verranno ricavate delle altezze di pioggia h pari alle altezze di pioggia lorda h calcolate con le curve di possibilità pluviometrica moltiplicate per il coefficiente ARF di ragguaglio della precipitazione all'area del bacino.

2.1.7 Coefficiente di deflusso

Di fondamentale importanza per una corretta valutazione delle portate di piena è la stima del coefficiente di deflusso Ψ, che merita particolare attenzione perché può dar luogo a sottostime o soprastime, anche rilevanti, della portata di piena.

Infatti non tutta l'acqua della precipitazione (PIOGGIA TOTALE) contribuisce alla portata superficiale, parte si infiltra nel sottosuolo e va ad alimentare le falde, parte viene assorbita dalle piante, parte ritorna in testa al ciclo idrologico sotto forma di vapore per fenomeni diretti di evaporazione o evapotraspirazione delle piante, parte viene immagazzinata nelle depressioni superficiali e come umidità del suolo, e infine vi è una parte, in genere la più cospicua, che va a formare il deflusso superficiale e scorre verso le zone di compluvio formando prima i rigagnoli quindi i torrenti e i fiumi arricchendosi sempre più in quantità.

La parte di pioggia totale che alimenta il deflusso superficiale è detta **pioggia netta** e il coefficiente di deflusso rappresenta appunto il rapporto tra tale pioggia e la pioggia totale.

Il coefficiente di deflusso individua le cosiddette perdite del bacino che dipendono da diversi fattori, in primo luogo dal tipo di terreno, dalla copertura vegetale e dalle condizioni iniziali di umidità. Per la sua determinazione sono stati proposti diversi metodi che vanno da semplici tabelle di riferimento che tengono in considerazione alcuni elementi come copertura del suolo e superficie del bacino ai metodi più complessi che cercano di tenere in conto della pluralità di fattori sopra riportati.

Uno di questi è il **Metodo Curve Number** elaborato dal Soil Conservation Service fin dal 1956 che è tra quelli più utilizzati ed è attualmente considerato tra i più appropriati riportati in letteratura. Nel rapporto VAPI per la Sardegna si è scelto di ricorrere a questo metodo, che consente di ricavare il valore della pioggia netta mediante la stima delle perdite di bacino dovute ai fenomeni di infiltrazione:

$$h_N = \frac{(h - I_a)^2}{h - I_a + f_s} \tag{1}$$

dove:

 I_a = fattore di ritenzione iniziale;

 f_s = capacità massima di assorbimento del bacino (è la massima quantità invasabile nel terreno dopo l'inizio del deflusso superficiale).

Da riscontri sperimentali si è ricavato:

$$I_a = 0.20 \cdot f_s$$

quindi la (1) diventa:

$$h_N = \frac{(h - 0.20 \cdot f_s)^2}{h + 0.80 \cdot f_s} \tag{2}$$

f_s è collegato alle caratteristiche del suolo dalla seguente formula:

$$f_s = \frac{25400}{CN} - 254 \text{ [mm]} \tag{3}$$

Il CN è un indice numerico che descrive in percentuale la quantità d'acqua caduta nel suolo che contribuirà al deflusso superficiale. Può variare da 0 a 100 anche se in pratica oscilla tra 25 e 98; per esempio un'area completamente pavimentata può avere CN=98 e un campo coltivato CN \approx 25. In altre parole, com'è evidente dalla (3) se CN è grande, l'infiltrazione F_s è piccola e quindi avremo elevato coefficienti di deflusso.

I valori del CN, che teoricamente possono variare tra zero (assenza di deflusso superficiale) e 100 (assenza di perdite per infiltrazione), si ricavano dalle tabelle del Soli Conservati Service in funzione principalmente dell'uso del suolo e della capacità di infiltrazione di questo ultimo.

E' necessario tener conto delle condizioni iniziali di imbibimento del terreno attribuendo al terreno in esame una classe AMC (ANTECEDENT MOISTURE CONDITION):

AMC I	Terreno poco saturo					
AMC II	Terreno mediamente saturo					
AMC III Terreno molto saturo						
Riferiti a valori di saturazione analizzati in base ai 5 g.g. di pioggia precedenti l'evento.						

Tabella 2-3: classi AMC per le condizioni iniziali di imbibimento del terreno

USO DEL SUOLO	TIPO DI DRENAGGIO	CONDIZIONI DROLOGICHE	TIP	O DI T	ERRE	NO
	Terreno Residenziale	DROLOGICILL	A	В	С	D
Zone urbane	85% impermeabile	qualsiasi	89	92	94	95
Zone industriali	72% impermeabile	""	81	88	91	93
Case a schiera	65% impermeabile	" "	77	85	90	92
Ville isolate	25% impermeabile	"	54	70	80	85
Parcheggi	100% impermeabile	** **	98	98	98	98
Parchi	75% a verde	** **	39	71	74	80
Strade pavimentate	Con cunette e	" "	98	98	98	98
-	fognatura					
Strade in macadam		" "	76	85	89	91
Strade sterrate		" "	72	82	87	89
Terreno Agricolo	•					
Prato stabile		qualsiasi	77	86	91	94
Seminativo	Solchi a rittocchino	Cattive	65	76	84	88
Seminativo	Solchi a rittocchino	Buone	63	75	83	87
Seminativo	Solchi a traversochino	Cattive	63	74	82	85
Seminativo	Solchi a traversochino	Buone	61	73	81	84
Seminativo	Terrazzato	Cattive	61	72	79	82
Seminativo	Terrazzato	Buone	59	70	78	81
Pascolo		Cattive	68	79	86	89
Pascolo		Discrete	49	69	79	84
Pascolo		Buone	39	71	64	80
Erbaio		qualsiasi	30	58	71	78
Terreno boschivo		Cattive	45	66	77	83
Terreno boschivo		Discrete	36	60	73	79
Terreno boschivo		Buone	25	55	70	77

Tabella 2-4: Valori del CN in funzione delle caratteristiche idrologiche dei suoli di copertura vegetale e per condizioni medie di umidità antecedenti l'evento (AMCII)

I valori del parametro CN tabellati in letteratura sono quelli riferiti a condizioni medie di umidità del terreno all'inizio della precipitazione e in funzione del tipo di terreno illustrati nella Tabella 2-5 riportatata nella pagina seguente.

Gruppo	Tipo di terreno
A	Suolo con alta capacità di infiltrazione, anche se già bagnato. Principalmente sabbia e ghiaia, con strati profondi e ben drenati.
В	Suolo con moderata capacità di infiltrazione allorquando risultano bagnati. Moderato drenaggio profondo. Tessitura da moderatamente fine a moderatamente grossolana
С	Suolo con piccola capacità di infiltrazione allorquando risultano bagnati. Solitamente presentano uno strato che impedisce il drenaggio verticale possiedono una tessitura da moderatamente fina a fina.
D	Suolo con molto piccola capacità di infiltrazione. Principalmente argille con alto potenziale di rigonfiamento; suoli con livello di falda alto e permanete; suoli con strati argillosi in superficie; suoli poco profondi su strati impermeabili o semi-impermeabili.

Tabella 2-5: suddivisione in classi del tipo di terreno in funzione della capacità di infiltrazione del suolo

2.2 Analisi idraulica

L'analisi idraulica delle opere in progetto e dei loro effetti sulle aree a pericolosità idraulica non può essere sviluppata con una modellazione in moto permanente canonica in quanto non è presente un'asta fluviale che per l'insufficienza della sua sezione idraulica o per la presenza di opere d'arte, ponti, tombini etc. non correttamente dimensionati presenta delle aree di esondazione.

Le aree sono determinate dall'allagamento delle aree morfologicamente più depresse dell'abito di Silì a causa delle acque di pioggia che in occasione di eventi meteorici particolarmente intensi che non riescono a essere smaltite dall'attuale rete di dreno verso il Canale San Giovanni.

Quindi una volta determinate le portate e i volumi relativi agli eventi critici per i 4 tempi di ritorno, come descritto nei capitoli successivi, si sono è determinata la risposta delle opere idrauliche in progetto per i tempi di ritorno dei 50, 100 e 200 anni, in termini di portate di picco e di volumi transitanti nel sistema idraulico oggetto di presente progetto di fattibilità tecnica ed economica.

3 Determinazione e caratterizzazione dei bacini idrografici drenanti l'abitato di Silì

Come anticipato in premessa gli interventi interessano essenzialmente l'abitato di Silì in quest'area l'idrografia superficiale è stata profondamente modificata dalle opere antropiche, per questo motivo per la determinazione dei bacini idrografici non si può prescindere dal considerare i principali interventi che hanno modificato volutamente o accidentalmente le linee di naturale deflusso delle acque meteoriche.

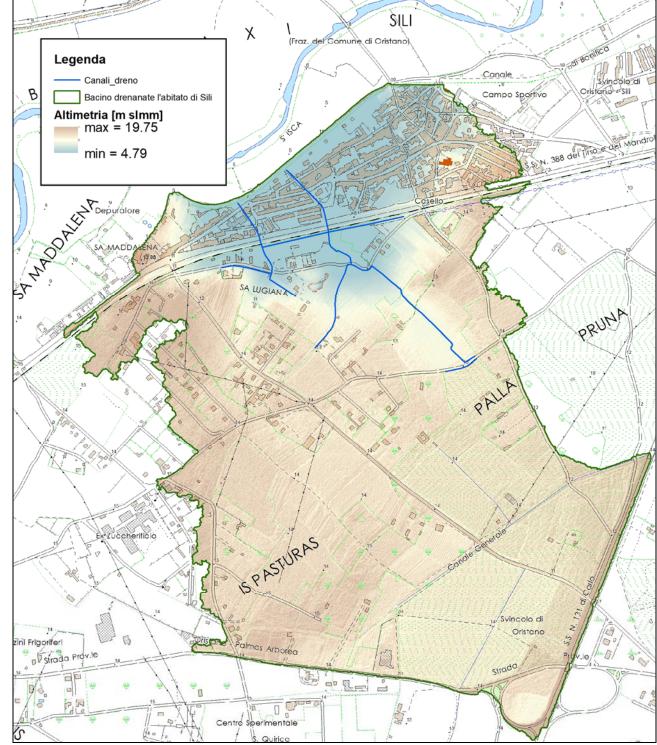


Figura 3.1: Bacino idrografico drenante l'abitato di Silì (su DBGT10k - Foglio 528080)

L'attenta analisi del territorio ha permesso di individuare un bacino principale suddiviso in due sottobacini per tenere conto del rilevato ferroviario che determina una vera e propria barriera al deflusso superficiale verso valle.

Nell'area oggetto dello studio non sono presenti dei veri e propri impluvi naturali, attualmente le piogge zenitale e quelle proveniente dall'area immediatamente a monte dell'abitato vengono collettate attraverso i canali del consorzio di bonifica e la rete di dreno delle acque meteoriche verso il Canale san Giovanni che corre parallelamente agli argini del Tirso a valle dell'edificato di Silì.

I due sottobacini individuati sono caratterizzati da usi del suolo completamente differenti, infatti il bacino a monte dell'abitato è una zona per lo più agricola, con vaste fasce di rispetto della linea ferroviaria, zone incolte e qualche caseggiato sparso, mentre il bacino di valle coincide proprio con l'abitato di Silì, quindi perlopiù impermeabilizzato.

3.1 Studio idrologico del bacino a monte del rilevato ferroviario

Il Bacino a monte dell'abitato drena la parte sud occidentale della frazione di Silì, e come sezione di chiusura per lo studio idrologico del bacino si è considerato il ponte ferroviario sul canale del Consorzio di Bonifica.

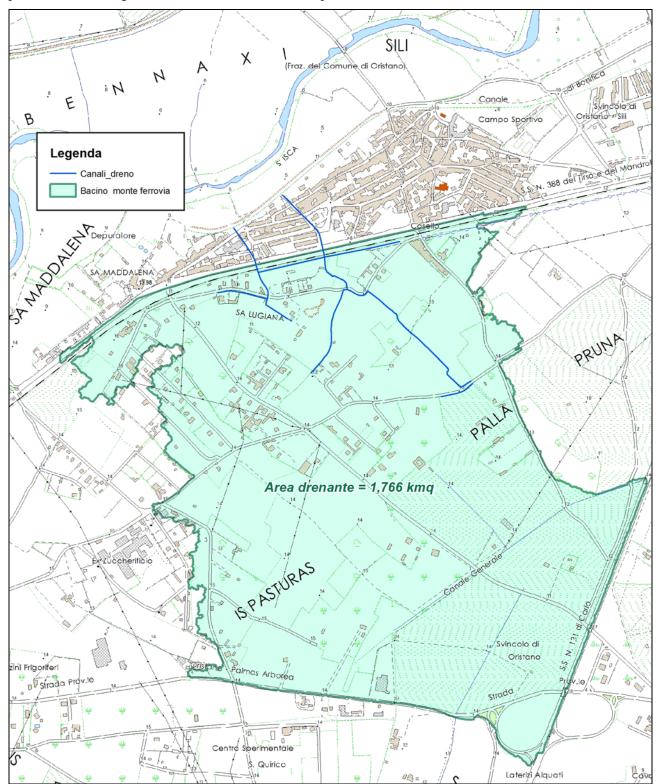


Figura 3.2: Bacino idrografico drenante l'abitato di Silì a monte del rilevato ferroviario (su Carta DBGT10k)

3.1.1 Morfologia del sottobacino

- Dall'analisi del bacino idrografico si sono ottenuti i seguenti risultati:

- Superficie $S=1,766 \text{ Km}^2$

- Lunghezza asta principale L= 1,595 km

- Altitudine massima $H_{MAX} = 19,75 \text{ m s.l.m}$

- Altitudine minima $H_0 = 5,59 \text{ m s.l.m}$

- Altitudine media $H_m = 12,32 \text{ m s.l.m.}$

- Pendenza media dell'asta principale im= 0.0012 = 0.12 %

- Pendenza media del bacino drenante i_{VERSANTE} = 4,69 %

Parametri di Forma del bacino

Indice di forma di Horton $H_F = 0.6943$

Il Fattore di Forma di Horton è il rapporto tra l'area del bacino A e l'area di un quadrato avente il lato pari

alla lunghezza dell'asta principale.

$$H_F = \frac{A}{L^2}$$

Indice di circolarità $R_C = 0.1700$

L'indice di circolarità è il rapporto tra l'area del bacino A e l'area del cerchio di uguale perimetro P:

$$R_c = 4\pi \frac{A}{P^2}$$

Indice di uniformità o compattezza di Gravelius $R_U = 2,4254$

L'indice di uniformità o di compattezza di Gravelius è il rapporto tra il perimetro del bacino e quello di un

cerchio avente lo stesso perimetro del bacino:

$$R_U = \frac{P}{2\sqrt{\pi \cdot A}}$$

Indice di allungamento $R_A = 0.9402$

L'indice di allungamento è il rapporto tra il diametro di un cerchio avente area uguale a quella del bacino e la

lunghezza dell'asta principale L: $R_{\scriptscriptstyle A} = \frac{2\sqrt{A}}{L\sqrt{\pi}}$

Altitudine media del bacino

E' la media ponderata delle altezze medie tra 2 curve di livello:

$$Hmed = \frac{1}{S} \left(\sum_{i=1}^{N} \left(\frac{H_i + H_{i+1}}{2} \right) \cdot S_i \right)$$

Si = superficie compresa tra due curve di livello Hi e Hi+1

Altitudine media bacino = 12,32 m slmm

Pendenza media dell'asta principale

$$\sqrt{im} = \frac{L}{\frac{l_1}{\sqrt{i_1}} + \dots + \frac{l_n}{\sqrt{i_n}}}$$

La pendenza media dell'asta principale è stata calcolata con la formula di Fornari :

dove i valori di iⁱ ed lⁱ rappresentano rispettivamente la pendenza e la lunghezza dei tratti nei quali la pendenza dell'alveo può considerarsi uniforme; L rappresenta la lunghezza complessiva dell'asta principale del bacino, ed è uguale alla sommatoria delle lⁱ.

Hi+1	Hi	ΔΗ	li	ii=∆H/li	√ii	li/√ii
(m)	(m)		(m)			
12.57	12.39	0.18	372.66	0.000483	0.021978	16956.37
12.39	12.32	0.07	131.83	0.000531	0.023043	5721.005
12.32	12.08	0.24	347.35	0.000691	0.026286	13214.34
12.08	10.42	1.66	181.81	0.00913	0.095553	1902.71
10.42	9.82	0.6	225.54	0.00266	0.051578	4372.801
9.82	6.76	3.06	158.47	0.01931	0.138959	1140.407
6.76	6.6	0.16	55.28	0.002894	0.053799	1027.524
6.6	5.88	0.72	122.00	0.005902	0.076822	1588.084
		L=	1594.94			45923.24

Da cui la pendenza media dell'asta principale risulta:

im=0.0012 = 0.12%

3.1.2 Risultati dello studio idrologico

Il bacino in studio ricade interamente nella SZO 1 e ha un Tp, che nel metodo cinematico è posto pari al Tc. Si determinano i parametri della curva di possibilità pluviometrica, descritti nel paragrafo 2.5.1, dove ricordiamo che μ_g è la pioggia indice giornaliera data dalla media dei massimi annui di precipitazione giornaliera; tali valori sono stati calcolati per diverse zone della Sardegna secondo la carta delle Isoiete riportata in Figura 2.1 e come si può vedere dalla Figura 4.6, il bacino dell'abitato di Silì è praticamente compreso tra la isoieta dei 45 mm e quella dei 40 mm quindi si può assumere come pioggia indice giornaliera cautelativamente il valore di 45 mm. Mentre il Tc è il tempo di corrivazione che è stato calcolato secondo i diversi metodi trattati nel paragrafo 2.1.3, fornendo i seguenti risultati:

METODO	Tc (ore)
SCS	0.678
Ventura	4.868
Giandotti	3.714
Viparelli	0.433
Pasini	4.392
VAPI	3.484

Inoltre ricordiamo che h'_{tc} è l'altezza critica moltiplicata per il coefficiente di riduzione areale ARF ottenuto con il metodo VAPI pari a 0,934 così determinato:

Coefficiente di riduzione areale

Quando si ricavano le altezze h di pioggia dalle curve di possibilità pluviometrica si suppone che tali valori corrispondano al centro di scroscio che viene individuato per ipotesi nel punto in cui vi è la stazione di misura.

Poi si considera tale pioggia uniformante distribuita su tutto il bacino. In realtà la pioggia diminuisce allontanandosi dal centro di scroscio, quindi considerare quella stessa intensità di pioggia costante su tutto il bacino porta ad un errore per eccesso.

Per tenere conto di ciò si è deciso di applicare alle altezze di pioggia ottenute un coefficiente di riduzione areale che è espresso da diverse formulazioni tra cui quella, utilizzata dal VAPI Sardegna, che fa riferimento al Flood Studies Report del Wallingford Institute (UK 1977):

$$ARF = 1 - f_1 \cdot T_p^{-f_2}$$

dove:

$$f_1 = 0.0394 \cdot S^{0.354}$$

$$f_2 = 0.4 - 0.003832 \cdot \ln(4.6 - \ln S)$$

Per il coefficiente ARF si osserva che:

- diminuisce all'aumentare dell'area S;
- aumenta all'aumentare della durata di pioggia T_p.

Per bacino in esame che ha un'area complessiva pari a 2.001 km² si trova:

S [km²]	f1	f2	ARF	
1,766	0.048189955	0.371003898	0.93426	

In base a tale coefficiente verranno ricavate delle altezze di pioggia h' pari alle altezze di pioggia lorda h calcolate con le curve di possibilità pluviometrica moltiplicate per il coefficiente ARF di ragguaglio della precipitazione all'area del bacino.

Coefficiente di deflusso

Di fondamentale importanza, come affermato in precedenza, per una corretta valutazione delle portate di piena è la stima del coefficiente di deflusso Ψ, che merita particolare attenzione perché può dar luogo a sottostime o soprastime, anche rilevanti, della portata di piena. Per i bacini in esame l'uso del suolo è stato ricavato dalla carta d'uso del suolo suddivisa in 80 tipologie contenute in 5 livelli gerarchici secondo l'impostazione della CORINE LAND COVER. Questi dati si sono inoltre incrociati con quelli relativi alla permeabilità, rappresentata dal tipo di terreno suddivisi in quattro classi, andando dalla più alta (classe A) alla più bassa (classe D), i risultati sono illustrati nella Tabella 3.1.

Uso Del Suolo	Descrizione	Tipo di terreno	CN II	CN III	AREA [m2]	AREA [%]
221	VIGNETI	В	76.00	87.93	21047.70	1.021%
222	FRUTTETI E FRUTTI MINORI	В	70.00	84.29	152463.82	7.396%
223	OLIVETTI	В	70.00	84.29	123550.31	5.994%
231	PRATI STABILI	В	86.00	93.39	97672.38	4.738%
242	SISTEMI COLTURALI E PARTICELLARI COMPLESSI	В	76.00	87.93	353501.84	17.149%
321	AREE A PASCOLO NATURALE	В	69.00	83.66	12494.02	0.606%
1111	TESSUTO RESIDENZIALE COMPATTO E DENSO	В	92.00	96.36	167344.11	8.118%
1112	TESSUTO RESIDENZIALE RADO	В	85.00	92.87	63266.83	3.069%
1121	TESSUTO RESIDENZIALE RADO E NUCLEIFORME	В	70.00	84.29	19762.20	0.959%
1122	FABBRICATI RURALI	В	70.00	84.29	22084.04	1.071%
1211	INSEDIAMENTI INDUSTRIALI/ARTIG. E COMM. E SPAZI ANNESSI	В	92.00	96.36	44807.43	2.174%
1221	RETI STRADALI E SPAZI ACCESSORI	В	98.00	99.12	21446.78	1.040%
1222	RETI FERROVIARIE E SPAZI ANNESSI	В	98.00	99.12	33742.76	1.637%
2121	SEMINATIVI SEMPLICI E COLTURE ORTICOLE A PIENO CAMPO	В	76.00	87.93	516378.54	25.050%
2122	RISAIE	В	100.00	100.00	395932.49	19.207%
2411	COLTURE TEMPORANEE ASSOCIATE ALL'OLIVO	В	70.00	84.29	2666.72	0.129%
3232	GARIGA	В	66.00	81.70	22.98	0.001%
3241	AREE A RICOLONIZZAZIONE NATURALE	В	66.00	81.70	13212.57	0.641%
	BACINO TOTALE		82.556	88.785	2061397.52	

Tabella 3.1: uso del suolo, tipo di terreno in funzione della permeabilità e Curve Number per il bacino a monte del rilevato

In base ai risultati ottenuti, sono stati calcolati gli h_{Ni} relativi a ciascuna codifica UDS ed è stata poi calcolata

la media pesata
$$h_N = \frac{\sum h_{Ni} \cdot S_i}{S_{bacino}}$$
 per ottenere la pioggia netta del nostro bacino.

Il coefficiente di deflusso sarà dato dal rapporto tra l'altezza di pioggia netta e quella lorda: $\psi = \frac{h_N}{h}$.

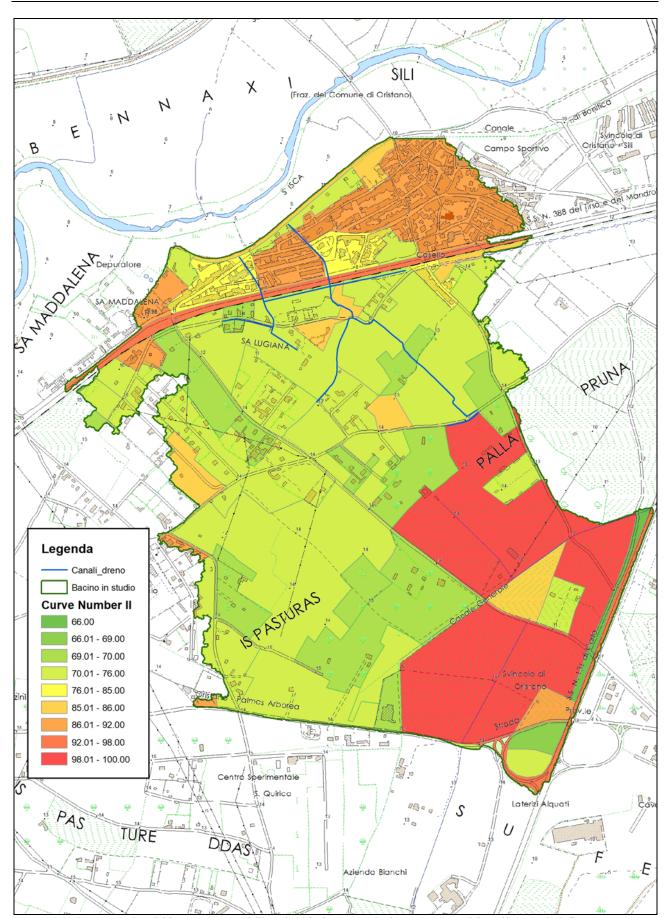


Figura 3.3: Curve Number del bacino oggetto dell'analisi idrologica per la determinazione del coefficiente di deflusso .

Si riassumono di seguito i risultati dell'analisi idrologica di dettaglio e l'analisi di sensitività dei risultati al variare del tempo di corrivazione determinato come illustrato nei paragrafi precedenti:

METODO	Tc (ore)
SCS	0.678
Ventura	4.868
Giandotti	3.714
Viparelli	0.433
Pasini	4.392
VAPI	3.484

Metodologia utilizzata	Metodo indiretto TCEV				
Dati di input	Simbolo	Valore	[U.M.]		
Superficie del bacino	S	1.766	Kmq		
Sottozona omogenea	SZO	1			
Pioggia indice giornaliera	μg	45	mm		
Coefficiente di riduzione areale	ARF	0.948			
Curve Number II	CN II	82,556			
Curve Number III	CN II	88.785			
Fattore di ritenzione iniziale	fs	47.168	mm		
Capacità di massimo assorbimento del bacino	la	9.434			

- Risultati per Tc = 0.678 h (metodo SCS - formule PAI)

Tempo di ritorno	· Frattile Coefficienti metodo ICFV		Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario			
[anni]		a1	n1 a2 n2		[mm]	[mm]	[mm]		[m ³ /s]	[m³/s - kmq]	
50	0,980	19.9570	0.2939	2.2271	0.1093	37.989	35.874	14.100	0.393	10.210	5.78
100	0,990	19.9570	0.2939	2.5394	0.1415	42.779	40.397	17.478	0.433	12.656	7.17
200	0,995	19.9570	0.2939	2.8517	0.1676	47.555	44.907	20.992	0.467	15.200	8.61
500	0,998	19.9570	0.2939	3.2647	0.1928	53.908	50.906	25.848	0.508	18.717	10.60

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 0,678 h (metodo SCS – formule PSFF)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	īV	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2283	0.1106	37.992	35.877	14.102	0.393	10.211	5.78
100	0,990	19.9570	0.2939	2.5410	0.1428	42.783	40.401	17.480	0.433	12.657	7.17
200	0,995	19.9570	0.2939	2.8536	0.1690	47.560	44.912	20.996	0.467	15.203	8.61
500	0,998	19.9570	0.2939	3.2669	0.1943	53.914	50.912	25.853	0.508	18.720	10.60

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 4,868 h (metodo VENTURA – formule PAI)

Tempo di ritorno	Frattile	Coe <u>f</u>	ficienti met	odo TCEV	,	Pioggia Iorda	Pioggia lorda ,	Pioggia netta	Coefficient e di deflusso	Portata di progett o	Contribut o Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2271	-0.0238	68.152	66.327	39.015	0.588	3.933	2.23
100	0,990	19.9570	0.2939	2.5394	-0.0262	77.421	75.347	47.036	0.624	4.741	2.68
200	0,995	19.9570	0.2939	2.8517	-0.0285	86.619	84.299	55.159	0.654	5.560	3.15
500	0,998	19.9570	0.2939	3.2647	-0.0317	98.672	96.028	65.986	0.687	6.651	3.77

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 4,868 h (metodo VENTURA – formule PSFF)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	EV .	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2283	-0.0240	68.172	66.345	39.032	0.588	3.934	2.23
100	0,990	19.9570	0.2939	2.5410	-0.0264	77.445	75.370	47.057	0.624	4.743	2.69
200	0,995	19.9570	0.2939	2.8536	-0.0287	86.647	84.326	55.183	0.654	5.562	3.15
500	0,998	19.9570	0.2939	3.2669	-0.0319	98.704	96.059	66.015	0.687	6.654	3.77

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 3,714 h (metodo Giandotti – formule PAI)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCL	EV .	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m³/s]	
50	0,980	19.9570	0.2939	2.2271	-0.0238	63.353	61.477	34.788	0.566	4.595	2.60
100	0,990	19.9570	0.2939	2.5394	-0.0262	72.015	69.882	42.154	0.603	5.568	3.15
200	0,995	19.9570	0.2939	2.8517	-0.0285	80.622	78.234	49.641	0.635	6.557	3.71
500	0,998	19.9570	0.2939	3.2647	-0.0317	91.918	89.195	59.656	0.669	7.880	4.46

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 3,714 h (metodo Giandotti – formule PSFF)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	īV	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2283	-0.0240	63.374	61.497	34.806	0.566	4.597	2.60
100	0,990	19.9570	0.2939	2.5410	-0.0264	72.041	69.907	42.176	0.603	5.571	3.15
200	0,995	19.9570	0.2939	2.8536	-0.0287	80.652	78.264	49.667	0.635	6.560	3.71
500	0,998	19.9570	0.2939	3.2669	-0.0319	91.953	89.230	59.688	0.669	7.884	4.46

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 0,433 h (metodo Viparelli – formule PAI)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	īV.	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2271	0.1093	32.007	29.921	9.938	0.332	11.006	6.23
100	0,990	19.9570	0.2939	2.5394	0.1415	35.554	33.237	12.211	0.367	13.523	7.66
200	0,995	19.9570	0.2939	2.8517	0.1676	39.088	36.540	14.587	0.399	16.154	9.15
500	0,998	19.9570	0.2939	3.2647	0.1928	43.836	40.978	17.923	0.437	19.849	11.24

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 0,433 h (metodo Viparelli – formule PSFF)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	īV.	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m³/s]	
50	0,980	19.9570	0.2939	2.2283	0.1106	31.697	29.613	9.733	0.329	11.029	6.24
100	0,990	19.9570	0.2939	2.5410	0.1428	35.183	32.870	11.954	0.364	13.545	7.67
200	0,995	19.9570	0.2939	2.8536	0.1690	38.655	36.114	14.275	0.395	16.175	9.16
500	0,998	19.9570	0.2939	3.2669	0.1943	43.325	40.477	17.539	0.433	19.873	11.25

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 4,392 h (metodo Pasini – formule PAI)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	īV	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2271	-0.0238	66.285	64.441	37.364	0.580	4.174	2.36
100	0,990	19.9570	0.2939	2.5394	-0.0262	75.318	73.222	45.131	0.616	5.042	2.85
200	0,995	19.9570	0.2939	2.8517	-0.0285	84.287	81.941	53.006	0.647	5.922	3.35
500	0,998	19.9570	0.2939	3.2647	-0.0317	96.046	93.373	63.519	0.680	7.096	4.02

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 4,392 h (metodo Pasini – formule PSFF)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	EV .	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2283	-0.0240	66.305	64.460	37.380	0.580	4.176	2.36
100	0,990	19.9570	0.2939	2.5410	-0.0264	75.343	73.246	45.152	0.616	5.044	2.86
200	0,995	19.9570	0.2939	2.8536	-0.0287	84.316	81.969	53.032	0.647	5.924	3.35
500	0,998	19.9570	0.2939	3.2669	-0.0319	96.079	93.405	63.549	0.680	7.099	4.02

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 3,484 h (metodo VAPI – formule PAI)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	EV .	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2271	-0.0238	62.266	60.378	33.840	0.560	4.766	2.70
100	0,990	19.9570	0.2939	2.5394	-0.0262	70.790	68.643	41.057	0.598	5.782	3.27
200	0,995	19.9570	0.2939	2.8517	-0.0285	79.263	76.860	48.399	0.630	6.816	3.86
500	0,998	19.9570	0.2939	3.2647	-0.0317	90.387	87.646	58.229	0.664	8.200	4.64

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 3,484 h (metodo VAPI – formule PSFF)

Tempo di ritorno	Frattile	Coe	fficienti m	etodo TCE	īV	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto	Contributo Unitario
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]	
50	0,980	19.9570	0.2939	2.2283	-0.0240	62.288	60.399	33.858	0.561	4.768	2.70
100	0,990	19.9570	0.2939	2.5410	-0.0264	70.817	68.669	41.080	0.598	5.785	3.28
200	0,995	19.9570	0.2939	2.8536	-0.0287	79.294	76.890	48.426	0.630	6.819	3.86
500	0,998	19.9570	0.2939	3.2669	-0.0319	90.423	87.681	58.261	0.664	8.205	4.65

Pioggia Lorda ' = Pioggia Lorda x ARF

- Nella seguente tabella sono riassunti i risultati dell'analisi di sensitività delle portate di progetto in funzione dei tempi di corrivazione, calcolate con le formule PAI:

Tempi di corrivazione		Q50 anni	Q 100 anni	Q 200 anni	Q 500 anni
SCS	0.798	6.796	8.796	10.923	13.911
Ventura	4.868	3.135	3.873	4.630	5.651
Giandotti	3.714	3.606	4.485	5.392	6.621
Viparelli	0.443	6.871	8.841	10.955	14.000
Pasini	4.392	3.308	4.097	4.908	6.004
VAPI	3.484	3.725	4.641	5.587	6.871

Mentre nella seguente quelle calcolate con le formule PSFF:

Tempi di corrivazione		Q50 anni	Q 100 anni	Q 200 anni	Q 500 anni
SCS	0.798	6.801	8.802	10.930	13.920
Ventura	4.868	3.137	3.875	4.632	5.653
Giandotti	3.714	3.608	4.488	5.395	6.624
Viparelli	0.443	6.863	8.831	10.943	13.985
Pasini	4.392	3.310	4.099	4.910	6.007
VAPI	3.484	3.727	4.644	5.590	6.875

In conclusione per quanto appena illustrato il bacino in studio si hanno le condizioni di deflusso più gravose metodo indiretto TCEV con le curve segnalatrici del PSFF e tempo di corrivazione determinato con la formula di Viparelli.

3.2 Studio idrologico del bacino drenante la porzione dell'abitato di Silì a valle del rilevato ferroviario

Il Bacino dell'abitato drena la parte maggiormente edificata della frazione di Silì, e come asta per lo studio idrologico del bacino si sono considerati i canali di dreno con sezione di chiusura nel punto di immissione nel Rio San Giovanni.

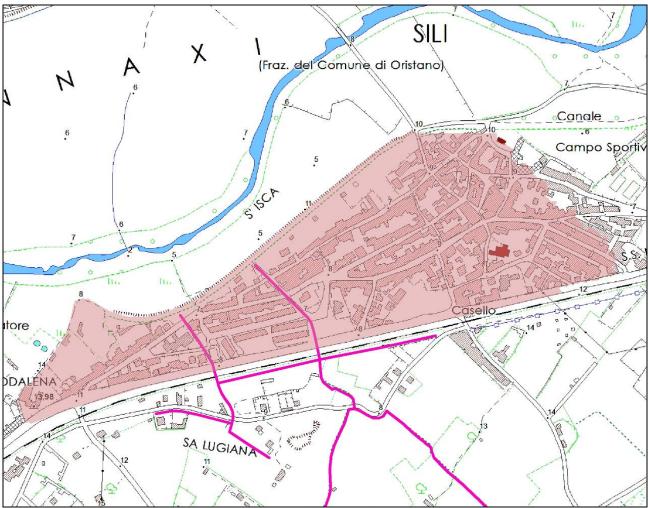


Figura 3.4: Bacino idrografico drenante l'abitato di Silì (su Carta CTR) a valle del rilevato ferroviario

3.2.1 Morfologia del sottobacino

- Dall'analisi del bacino idrografico si sono ottenuti i seguenti risultati:

Superficie $S=0,295 \text{ Km}^2$ Lunghezza asta principale L=0,596 kmAltitudine massima $H_{MAX}=15,28 \text{ m s.l.m}$ Altitudine minima $H_0=4,79 \text{ m s.l.m}$ Altitudine media $H_m=8,63 \text{ m s.l.m.}$ Pendenza media dell'asta principale im=0.0021=0,21 %Pendenza media del bacino drenante $i_{VERSANTE}=6,26 \%$

Parametri di Forma del bacino

Indice di forma di Horton

$$H_F = 0.8308$$

Il Fattore di Forma di Horton è il rapporto tra l'area del bacino A e l'area di un quadrato avente il lato pari $H_F = \frac{A}{r^2}$ alla lunghezza dell'asta principale.

$$H_F = \frac{A}{L^2}$$

Indice di circolarità

$$R_C = 0.2615$$

L'indice di circolarità è il rapporto tra l'area del bacino A e l'area del cerchio di uguale perimetro P:

$$R_c = 4\pi \frac{A}{P^2}$$

Indice di uniformità o compattezza di Gravelius

$$R_{IJ} = 1.9557$$

L'indice di uniformità o di compattezza di Gravelius è il rapporto tra il perimetro del bacino e quello di un

cerchio avente lo stesso perimetro del bacino:

$$R_U = \frac{P}{2\sqrt{\pi \cdot A}}$$

Indice di allungamento

$$R_A = 1,0285$$

L'indice di allungamento è il rapporto tra il diametro di un cerchio avente area uguale a quella del bacino e la

lunghezza dell'asta principale L:

$$R_A = \frac{2\sqrt{A}}{L\sqrt{\pi}}$$

Altitudine media del bacino

E' la media ponderata delle altezze medie tra 2 curve di livello:

$$Hmed = \frac{1}{S} \left(\sum_{i=1}^{N} \left(\frac{H_i + H_{i+1}}{2} \right) \cdot S_i \right)$$

Si = superficie compresa tra due curve di livello Hi e Hi+1

Altitudine media bacino = 8.63 m slmm

3.2.2 Risultati dello studio idrologico

Il bacino in studio ricade interamente nella SZO 1 e ha un Tp, che nel metodo cinematico è posto pari al Tc. Si determinano i parametri della curva di possibilità pluviometrica, descritti nel paragrafo 2.5.1, dove ricordiamo che μ_g è la pioggia indice giornaliera data dalla media dei massimi annui di precipitazione giornaliera; tali valori sono stati calcolati per diverse zone della Sardegna secondo la carta delle Isoiete riportata in Figura 2.1 e come si può vedere dalla Figura 4.6, il bacino dell'abitato di Silì è praticamente compreso tra la isoieta dei 45 mm e quella dei 40 mm quindi si può assumere come pioggia indice giornaliera cautelativamente il valore di 45 mm. Mentre il Tc è il tempo di corrivazione che è stato calcolato secondo i diversi metodi trattati nel paragrafo 2.1.3, fornendo i seguenti risultati:

METODO	Tc (ore)
scs	0.317
Ventura	1.515
Giandotti	1.956
Viparelli	0.166
Pasini	1.327
VAPI	1.776

Inoltre ricordiamo che h'_{tc} è l'altezza critica moltiplicata per il coefficiente di riduzione areale ARF ottenuto con il metodo VAPI pari a 0,945 così determinato:

Coefficiente di riduzione areale

Quando si ricavano le altezze h di pioggia dalle curve di possibilità pluviometrica si suppone che tali valori corrispondano al centro di scroscio che viene individuato per ipotesi nel punto in cui vi è la stazione di misura.

Poi si considera tale pioggia uniformante distribuita su tutto il bacino. In realtà la pioggia diminuisce allontanandosi dal centro di scroscio, quindi considerare quella stessa intensità di pioggia costante su tutto il bacino porta ad un errore per eccesso.

Per tenere conto di ciò si è deciso di applicare alle altezze di pioggia ottenute un coefficiente di riduzione areale che è espresso da diverse formulazioni tra cui quella, utilizzata dal VAPI Sardegna, che fa riferimento al Flood Studies Report del Wallingford Institute (UK 1977):

$$ARF = 1 - f_1 \cdot T_p^{-f_2}$$

dove:

$$f_1 = 0.0394 \cdot S^{0.354}$$

$$f_2 = 0.4 - 0.003832 \cdot \ln(4.6 - \ln S)$$

Per il coefficiente ARF si osserva che:

- diminuisce all'aumentare dell'area S;
- aumenta all'aumentare della durata di pioggia T_p.

Per bacino in esame che ha un'area complessiva pari a 2.001 km² si trova:

S [km2]	f1	f2	ARF
0,295	0,025578018	0,363363415	0,96091

In base a tale coefficiente verranno ricavate delle altezze di pioggia h' pari alle altezze di pioggia lorda h calcolate con le curve di possibilità pluviometrica moltiplicate per il coefficiente ARF di ragguaglio della precipitazione all'area del bacino.

Coefficiente di deflusso

Di fondamentale importanza, come affermato in precedenza, per una corretta valutazione delle portate di piena è la stima del coefficiente di deflusso Ψ, che merita particolare attenzione perché può dar luogo a

sottostime o soprastime, anche rilevanti, della portata di piena. Per i bacini in esame l'uso del suolo è stato ricavato dalla carta d'uso del suolo suddivisa in 80 tipologie contenute in 5 livelli gerarchici secondo l'impostazione della CORINE LAND COVER. Questi dati si sono inoltre incrociati con quelli relativi alla permeabilità, rappresentata dal tipo di terreno suddivisi in quattro classi, andando dalla più alta (classe A) alla più bassa (classe D), i risultati sono illustrati nella Tabella 3.2.

			TIPO	TIPO		
Uso			DI	DI		
Del		Tipo di	SUOLO	SUOLO	AREA	AREA
Suolo	Descrizione	terreno	CN II	CN III	[m2]	[%]
231	PRATI STABILI	Α	30.00	49.92	22.98	0.01
242	SISTEMI COLTURALI E PARTICELLARI COMPLESSI	Α	64.00	80.52	24290.97	8.35
1111	TESSUTO RESIDENZIALE COMPATTO E DENSO	Α	77.00	88.62	167344.11	57.55
1112	TESSUTO RESIDENZIALE RADO	Α	61.00	78.44	29870.43	10.27
1211	INSEDIAMENTI INDUSTRIALI, ARTIGIANALI E COMMERCIALI E SPAZI ANNESSI	Α	89.00	94.95	54680.17	18.80
1222	RETI FERROVIARIE E SPAZI ANNESSI	Α	98.00	99.13	6974.88	2.40
2121	SEMINATIVI SEMPLICI E COLTURE ORTICOLE A PIENO CAMPO	Α	63.00	79.84	7582.80	2.61
3232	GARIGA	Α	35.00	55.60	22.98	0.01

Tabella 3.2: uso del suolo, tipo di terreno in funzione della permeabilità e Curve Number per il bacino drenante l'abitato

In base ai risultati ottenuti, sono stati calcolati gli h_{Ni} relativi a ciascuna codifica UDS ed è stata poi calcolata

la media pesata
$$h_N = \frac{\sum h_{Ni} \cdot S_i}{S_{bacino}}$$
 per ottenere la pioggia netta del nostro bacino.

Il coefficiente di deflusso sarà dato dal rapporto tra l'altezza di pioggia netta e quella lorda: $\psi = \frac{h_N}{h}$.

Si riassumono di seguito i risultati dell'analisi idrologica di dettaglio e l'analisi di sensitività dei risultati al variare del tempo di corrivazione determinato come illustrato nei paragrafi precedenti:

METODO	Tc (ore)
SCS	0.317
Ventura	1.515
Giandotti	1.956
Viparelli	0.166
Pasini	1.327
VAPI	1.776

Metodologia utilizzata	Metodo indiretto TCEV			
Dati di input	Simbolo	Valore	[U.M.]	
Superficie del bacino	S	0.295	Kmq	
Sottozona omogenea	SZO	1		
Pioggia indice giornaliera	μg	45	mm	
Coefficiente di riduzione areale	ARF	0.951		
Curve Number	CN	84.611		
Fattore di ritenzione iniziale	fs	46.198	mm	
Capacità di massimo assorbimento del bacino	la	9.240		

- Risultati per Tc = 0.317 h (metodo SCS - formule PAI)

Tempo di ritorno	Frattile	Со	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m³/s]
50	0,980	19.9570	0.2939	2.2271	0.1093	27.757	26.672	4.776	0.179	1.258
100	0,990	19.9570	0.2939	2.5394	0.1415	30.485	29.294	6.070	0.207	1.599
200	0,995	19.9570	0.2939	2.8517	0.1676	33.207	31.909	7.462	0.234	1.966
500	0,998	19.9570	0.2939	3.2647	0.1928	36.910	35.467	9.498	0.268	2.502

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 0.317 h (metodo SCS – formule PSFF)

Tempo di ritorno	Frattile	Co	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]
50	0,980	19.9570	0.2939	2.2283	0.1106	27.732	26.648	4.764	0.179	1.255
100	0,990	19.9570	0.2939	2.5410	0.1428	30.455	29.265	6.055	0.207	1.595
200	0,995	19.9570	0.2939	2.8536	0.1690	33.173	31.876	7.444	0.234	1.961
500	0,998	19.9570	0.2939	3.2669	0.1943	36.871	35.430	9.476	0.267	2.496

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 1,515 h (metodo VENTURA – formule PAI)

Tempo di ritorno	Frattile	Со	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		$[m^3/s]$
50	0,980	19.9570	0.2939	2.2271	-0.0238	49.722	48.629	18.128	0.373	0.981
100	0,990	19.9570	0.2939	2.5394	-0.0262	56.640	55.395	23.067	0.416	1.248
200	0,995	19.9570	0.2939	2.8517	-0.0285	63.545	62.147	28.245	0.454	1.528
500	0,998	19.9570	0.2939	3.2647	-0.0317	72.651	71.053	35.375	0.498	1.914

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 1,515 h (metodo VENTURA – formule PSFF)

Tempo di ritorno	Frattile	Co	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]
50	0,980	19.9570	0.2939	2.2283	-0.0240	49.747	48.653	18.145	0.373	0.982
100	0,990	19.9570	0.2939	2.5410	-0.0264	56.671	55.424	23.089	0.417	1.249
200	0,995	19.9570	0.2939	2.8536	-0.0287	63.581	62.182	28.273	0.455	1.530
500	0,998	19.9570	0.2939	3.2669	-0.0319	72.695	71.096	35.410	0.498	1.916

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 1,956 h (metodo Giandotti – formule PAI)

Tempo di ritorno	Frattile	Со	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		$[m^3/s]$
50	0,980	19.9570	0.2939	2.2271	-0.0238	53.278	52.210	20.707	0.397	0.868
100	0,990	19.9570	0.2939	2.5394	-0.0262	60.654	59.438	26.141	0.440	1.095
200	0,995	19.9570	0.2939	2.8517	-0.0285	68.006	66.643	31.806	0.477	1.333
500	0,998	19.9570	0.2939	3.2647	-0.0317	77.690	76.133	39.567	0.520	1.658

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 1,956 h (metodo Giandotti – formule PSFF)

Tempo di ritorno	Frattile	Со	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]
50	0,980	19.9570	0.2939	2.2283	-0.0240	53.302	52.233	20.725	0.397	0.868
100	0,990	19.9570	0.2939	2.5410	-0.0264	60.683	59.467	26.163	0.440	1.096
200	0,995	19.9570	0.2939	2.8536	-0.0287	68.041	66.677	31.834	0.477	1.334
500	0,998	19.9570	0.2939	3.2669	-0.0319	77.732	76.174	39.601	0.520	1.659

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 0,166 h (metodo Viparelli – formule PAI)

Tempo di ritorno	Frattile	Co	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]
50	0,980	19.9570	0.2939	2.2271	0.1093	21.521	20.463	2.194	0.107	1.086
100	0,990	19.9570	0.2939	2.5394	0.1415	23.161	22.023	2.771	0.126	1.372
200	0,995	19.9570	0.2939	2.8517	0.1676	24.817	23.597	3.404	0.144	1.686
500	0,998	19.9570	0.2939	3.2647	0.1928	27.148	25.813	4.376	0.170	2.167

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 0,166 h (metodo Viparelli – formule PSFF)

Tempo di ritorno	Frattile	Co	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]
50	0,980	19.9570	0.2939	2.2283	0.1106	21.484	20.427	2.181	0.107	1.080
100	0,990	19.9570	0.2939	2.5410	0.1428	23.119	21.982	2.755	0.125	1.364
200	0,995	19.9570	0.2939	2.8536	0.1690	24.769	23.551	3.385	0.144	1.676
500	0,998	19.9570	0.2939	3.2669	0.1943	27.093	25.761	4.352	0.169	2.155

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 1,327 h (metodo Pasini – formule PAI)

Tempo di ritorno	Frattile	Co	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m ³ /s]
50	0,980	19.9570	0.2939	2.2271	-0.0238	47.971	46.864	16.888	0.360	1.044
100	0,990	19.9570	0.2939	2.5394	-0.0262	54.663	53.401	21.583	0.404	1.334
200	0,995	19.9570	0.2939	2.8517	-0.0285	61.345	59.929	26.520	0.443	1.639
500	0,998	19.9570	0.2939	3.2647	-0.0317	70.165	68.546	33.338	0.486	2.060

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 1,327 h (metodo Pasini – formule PSFF)

Tempo di ritorno	Frattile	Со	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		$[m^3/s]$
50	0,980	19.9570	0.2939	2.2283	-0.0240	47.996	46.888	16.905	0.361	1.045
100	0,990	19.9570	0.2939	2.5410	-0.0264	54.694	53.431	21.606	0.404	1.335
200	0,995	19.9570	0.2939	2.8536	-0.0287	61.382	59.965	26.548	0.443	1.640
500	0,998	19.9570	0.2939	3.2669	-0.0319	70.210	68.589	33.373	0.487	2.062

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 1,776 h (metodo VAPI – formule PAI)

Tempo di ritorno	Frattile	Со	efficienti m	etodo TCE\	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		$[m^3/s]$
50	0,980	19.9570	0.2939	2.2271	-0.0238	51.907	50.829	19.704	0.388	0.909
100	0,990	19.9570	0.2939	2.5394	-0.0262	59.107	57.880	24.946	0.431	1.151
200	0,995	19.9570	0.2939	2.8517	-0.0285	66.287	64.911	30.424	0.469	1.404
500	0,998	19.9570	0.2939	3.2647	-0.0317	75.748	74.176	37.943	0.512	1.751

Pioggia Lorda ' = Pioggia Lorda x ARF

- Risultati per Tc = 1,776 h (metodo VAPI – formule PSFF)

Tempo di ritorno	Frattile	Co	efficienti m	netodo TCE	/	Pioggia Iorda	Pioggia Iorda '	Pioggia netta	Coefficiente di deflusso	Portata di progetto
[anni]		a1	n1	a2	n2	[mm]	[mm]	[mm]		[m³/s]
50	0,980	19.9570	0.2939	2.2283	-0.0240	51.931	50.853	19.721	0.388	0.910
100	0,990	19.9570	0.2939	2.5410	-0.0264	59.137	57.909	24.969	0.431	1.152
200	0,995	19.9570	0.2939	2.8536	-0.0287	66.322	64.946	30.452	0.469	1.405
500	0,998	19.9570	0.2939	3.2669	-0.0319	75.791	74.218	37.977	0.512	1.753

Pioggia Lorda ' = Pioggia Lorda x ARF

Nella seguente tabella sono riassunti i risultati dell'analisi di sensitività delle portate di progetto in funzione dei tempi di corrivazione, calcolate con le formule PAI:

Tempi di corrivazione		Q50 anni	Q 100 anni	Q 200 anni	Q 500 anni
SCS	0.317	1.258	1.599	1.966	2.502
Ventura	1.515	0.981	1.248	1.528	1.914
Giandotti	1.956	0.868	1.095	1.333	1.658
Viparelli	0.166	1.086	1.372	1.686	2.167
Pasini	1.327	1.044	1.334	1.639	2.060
VAPI	1.776	0.909	1.151	1.404	1.751

Mentre nella seguente quelle calcolate con le formule PSFF:

Tempi di corrivazione		Q50 anni	Q 100 anni	Q 200 anni	Q 500 anni
SCS	0.317	1.255	1.595	1.961	2.496
Ventura	1.515	0.982	1.249	1.530	1.916
Giandotti	1.956	0.868	1.096	1.334	1.659
Viparelli	0.166	1.080	1.364	1.676	2.155
Pasini	1.327	1.045	1.335	1.640	2.062
VAPI	1.776	0.910	1.152	1.405	1.753

I metodi indiretti come il TCEV si dimostrano del tutto inadatti a modellare un bacino urbano di così piccole dimensioni e tende a sottostimare le portate (anche del 50%), motivo per il quale si è deciso per il bacino residuo a valle del rilevato ferroviario di determinare le portate di picco come contributo unitario del bacuino di monte e di adottare queste per le verifiche idrauliche.

Bacino valle ferrovia	Sup	Tc	Q50 anni	Q 100 anni	Q 200 anni	Q 500 anni
	0.295	1.258	1.842	2.263	2.702	3.320
Contributo unitario			6,240	7,670	9,160	11,250

4 VERIFICA IDRAULICA

Come illustrato nella presente relazione le verifiche idrauliche si sono condotte considerando due bacini e due sistemi idraulici distinti ma connessi, il bacino a monte del rilevato ferroviario, che interessa aree per lo più agrarie, e il bacino a valle del rilevato prevalentemente urbano.

La connessione idraulica tra questi due bacini può avvenire realizza esclusivamente tramite due canalette del consorzio di bonifica che attraversano il rilevato ferroviario.

Per le verifiche e le modellazioni idrauliche non si può procedere con una classica modellazione monodimensionale, infatti non si può individuare un asta o un sistema di direzioni di deflusso principali ben definite e le rispettive aree di esondazione, le aree a pericolosità idraulica individuate nell'ambito dello "Studio di compatibilità idraulica e di compatibilità geologica e geotecnica ai sensi dell'art. 8 delle NA del PAI relativo a tutto il territorio comunale" del Comune di Oristano approvate con Delibera di Comitato Istituzionale dell'Autorità di Bacino Regionale n. 2 del 03.07.2018, infatti sono inquadrabili come aree di ristagno urbano.

Per quanto appena illustrato le modellazioni idrauliche e la determinazioni degli effetti di mitigazione degli interventi in progetto verrà valutata in termini di volume di pioggia e superficie interessate dagli eventi e relativi battenti idrici.

4.1 Portate e volumi utilizzati per la verifica idraulica

PORTATE DI PROGETTO,							
Denominazione	Area	Tc	Q Tr =50	Q Tr =100 Q Tr =200 Q Tr =50		Q Tr =500	
	[Km ²]	[h]	[m³/s]	[m³/s]	[m³/s]	[m³/s]	
Bacino totale	2,061		12.871	15.808	18.877	23.193	
Bacino monte ferrovia	1,766	0,433	11,029	13,545	16,175	19,873	
Bacino valle ferrovia	0,295	0,317	1,842	2,263	2,702	3,320	
VOLUMI DI PROGETTO							
Denominazione	Area		VTr =50	Q Tr =100	Q Tr =200	Q Tr =500	
	[Km ²]	[h]	[m³]	[m³]	[m³]	[m³]	
Bacino totale	2,061		38.584	47.389	56.588	69.527	
Bacino monte ferrovia	1,766	0,433	34.384	42.229	50.427	61.957	
Bacino valle ferrovia	0,295	0,317	4.200	5.160	6.161	7.570	

Tabella 4-1: Portate e volumi utilizzati per la verifiche idrauliche.

Cautelativamente per le verifiche idrauliche preliminare si utilizza degli idrogrammi di piena triangolari con tempo di concentrazione pari al tempo di corrivazione e fase di morbida pari a tre volte il tempo di concentrazione, questo tipo idrogramma a parità di portate di picco fornisce generalmente un volume complessivo dell'evento di piena maggiore rispetto ad altri modelli di idrogrammi comunemente usati in letteratura.

In corrispondenza dell'altura della Maddalena il canale è costituito da un cunicolo interrato in mattoni di larghezza 1,00 m, altezza 2,00 m e lunghezza di oltre un chilometro, che rapprsenta la sezione idraulicamente più critica del Canale San Giovanni. La massima portata che può defluire attraverso il cunicolo in moto uniforme è piuttosto modesto (1,73 mc/s) e pertanto in occasione di eventi di piena, anche non particolarmente eccezionali, tutto il tratto di monte risulterebbe rigurgitato.

Questo valore è stato assunto anche come massima portate colettabile dal canale San Giovanni per l'allontanamento delle portate di piena a valle degli interventi in progetto, oltre queste portate l'intero sistema potrebbe andare in crisi.

Nelle pagine successive vengono rappresentati i risultati della laminazione delle vasche di monte combinate con le vasche di valle nelle differenti ipotesi progettuali.

Come rappresentato nei grafici il sistema risulta efficiente se la portata in uscita è inferiore alla portata limite di 1,730 mc/s, che è la massima che può transitare nel tratto in galleria del Canale San Giovanni, se non viene rispettata questa portata limite il sistema va in crisi e si determina un allagamento che interessa l'abitato di Silì.

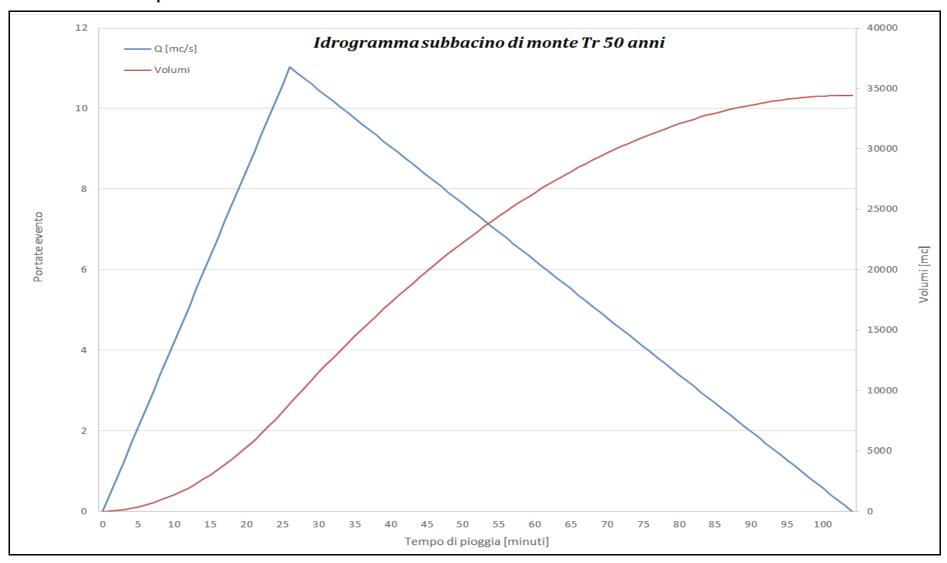
Come ipotesi progettuale per le verifiche idrauliche si è imposto cautelativamente che si verifichino contemporaneamente i due picchi di piena a monte e a valle, che alle vasche di valle arrivi la portata laminata dalle vasche di monte e la portata integrale del subbacino di valle, quello dall'abitato senza alcun ritardo, situazione più gravosa per il sistema.

Date le dimensioni piuttosto piccole dei bacini e la loro prossimità l'ipotesi appena fatta per quanto cautelativa è comunque realistica, è probabile infatti che il "centro di scroscio" dell'evento meteorico sia praticamente contemporaneo per il bacino a monte e per quello a valle del rilevato ferroviario.

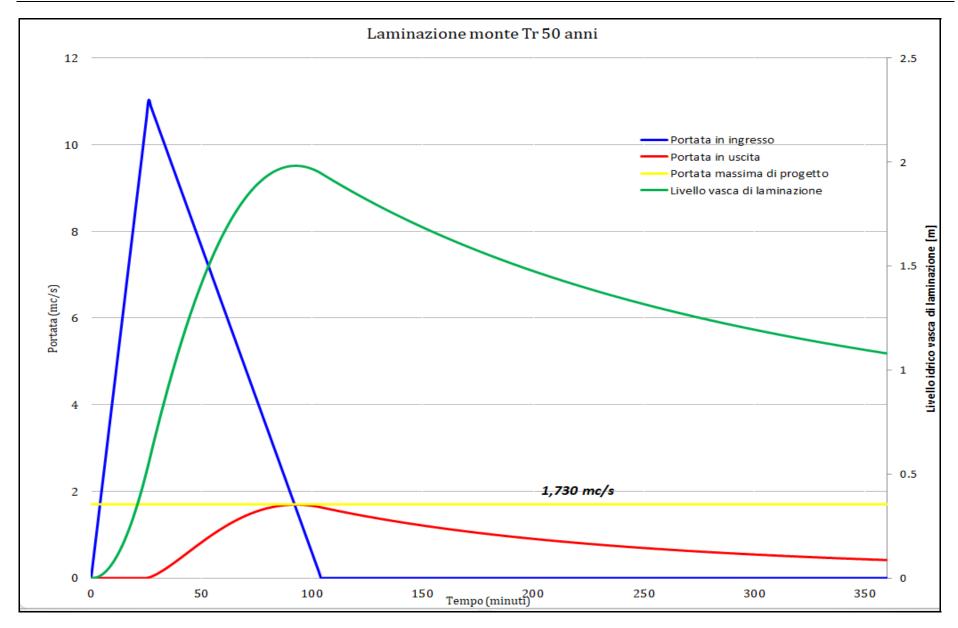
Nelle pagine successive sono illustrati i risultati delle simulazioni idrauliche in diverse configurazioni di progettuali e di funzionamento, per i tempi di ritorno dei 50, 100, e 200 anni.

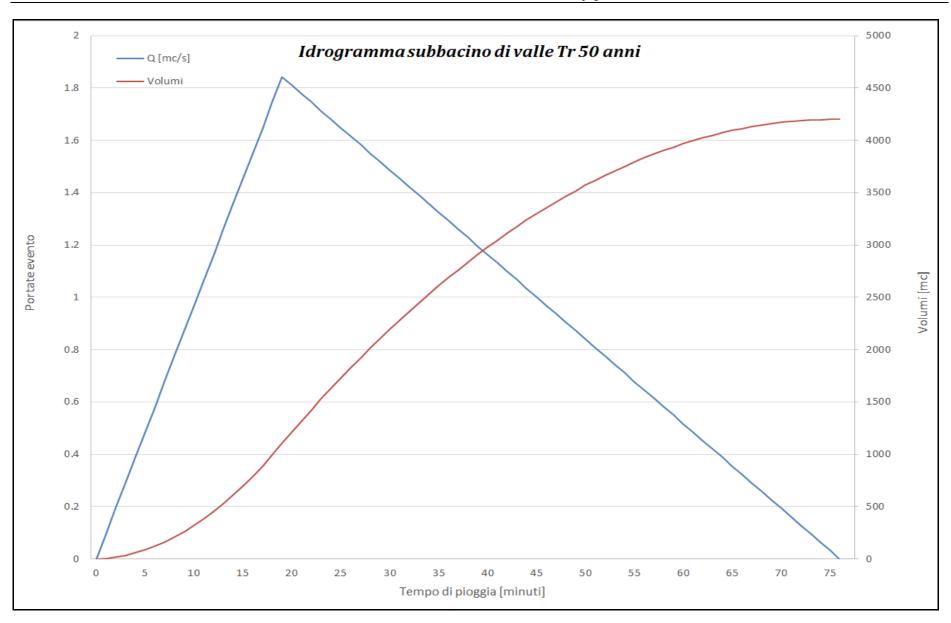
Configurazione progettuale con vasche grandi e stazioni di pompaggio funzionanti;

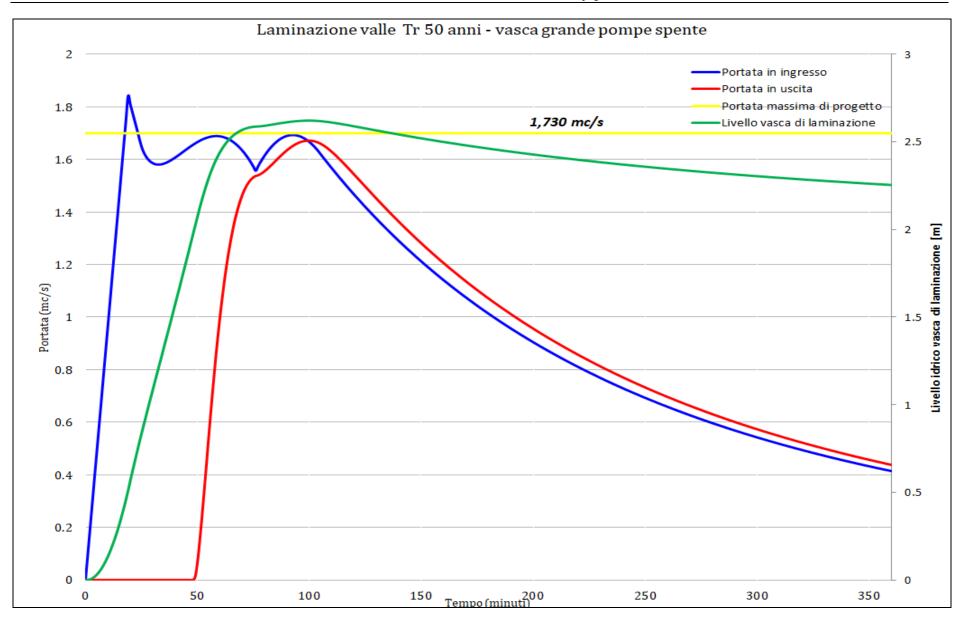
Configurazione progettuale con vasche grandi e stazioni di pompaggio non funzionanti;

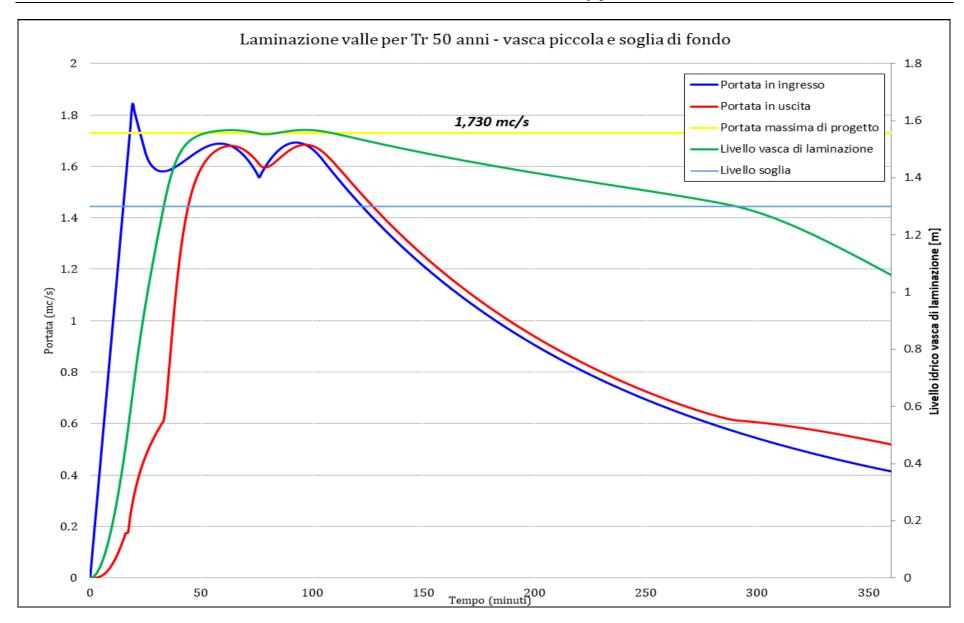

Configurazione progettuale con vasche ridotte e soglia di fondo senza stazioni di pompaggio.

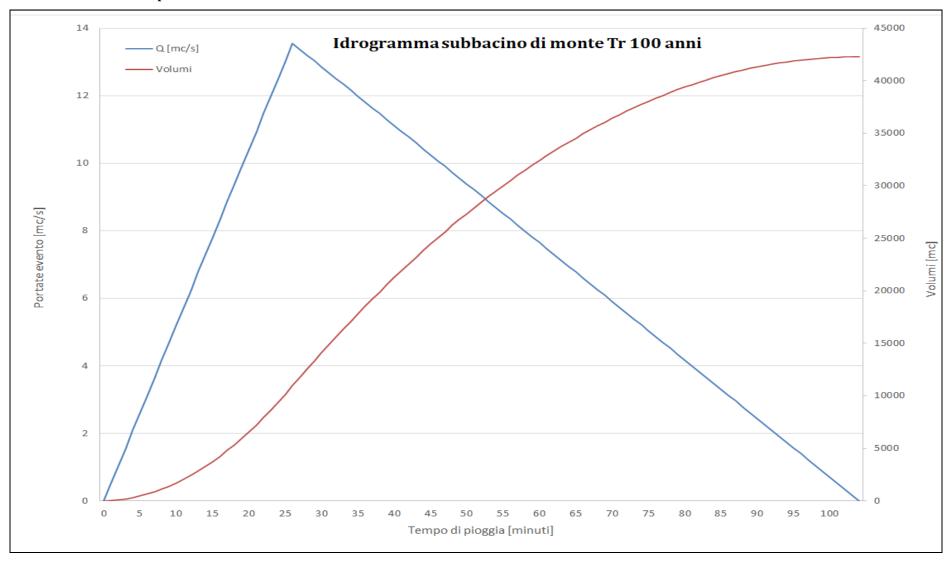
Le modellazioni nelle diverse configurazioni producono degli effetti differenti in termini di risposta ed efficienza del sistema complessivo, l'analisi combinata dei risultati con la stima preliminare dei costi di intervento, fornisce gli elementi per poter individuare la scelta tecnicamente ed economicamente più valida.

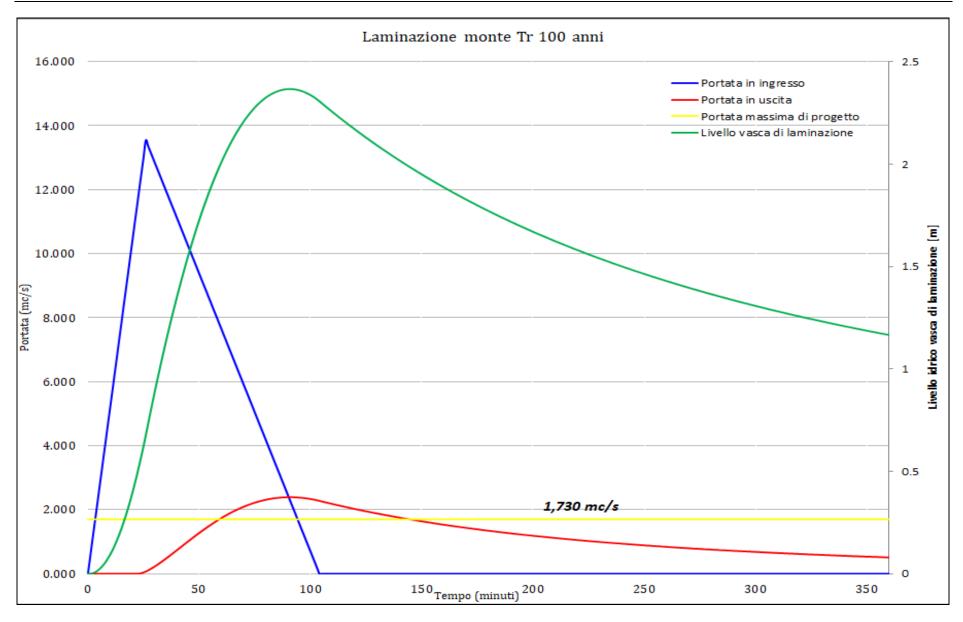

I risultati in termini di mitigazione della pericolosità e del rischio idraulico sono illustrati nel dettaglio nello studio di compatibilità idraulica, allegato al presente Progetto di fattibilità tecnica ed economica, ed in particolare nell' *Allegato G.3: Area a pericolosità idraulica di progetto – post operam*.

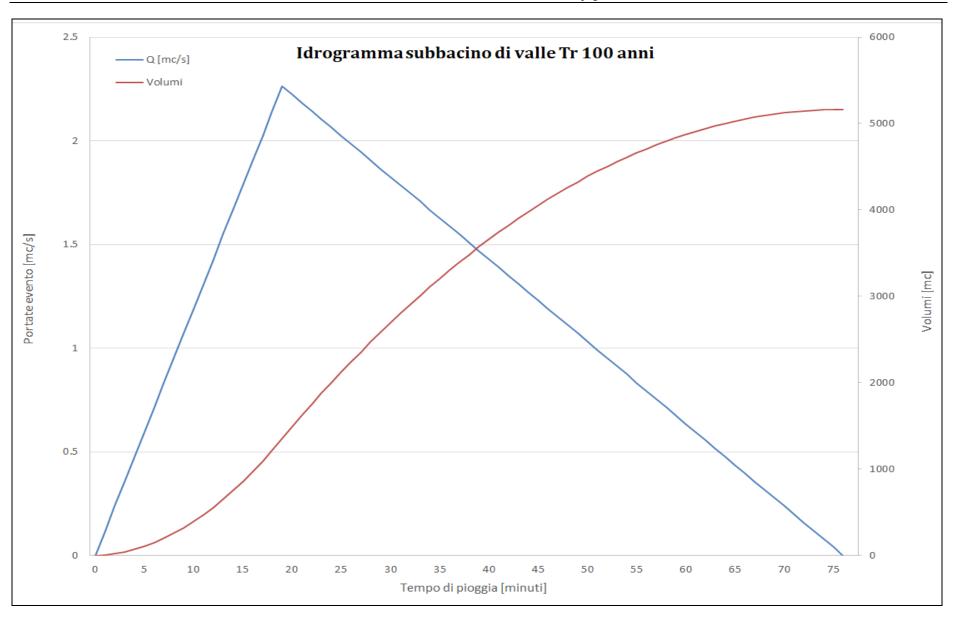

4.2 Laminazione delle piene Tr dei 50 anni

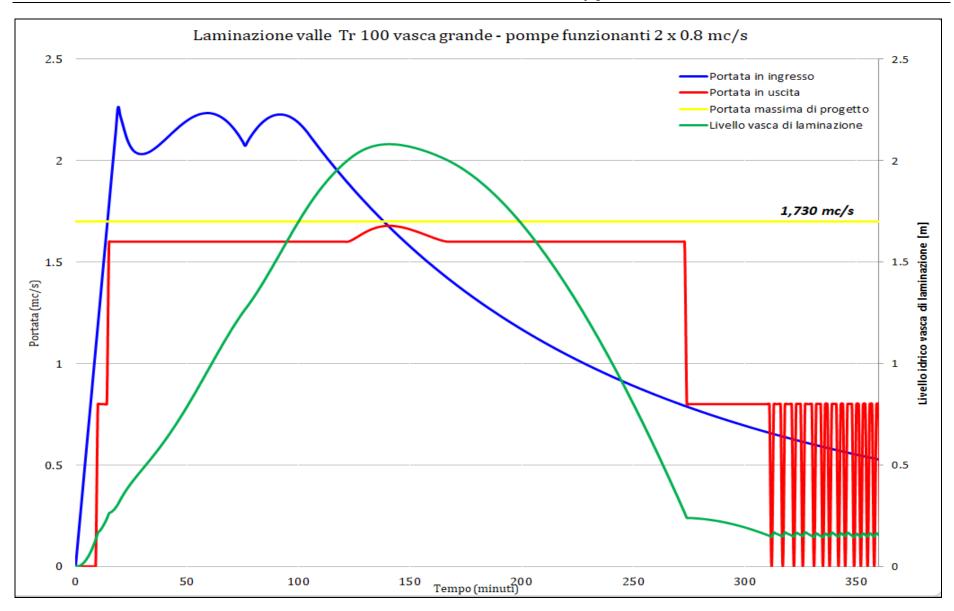


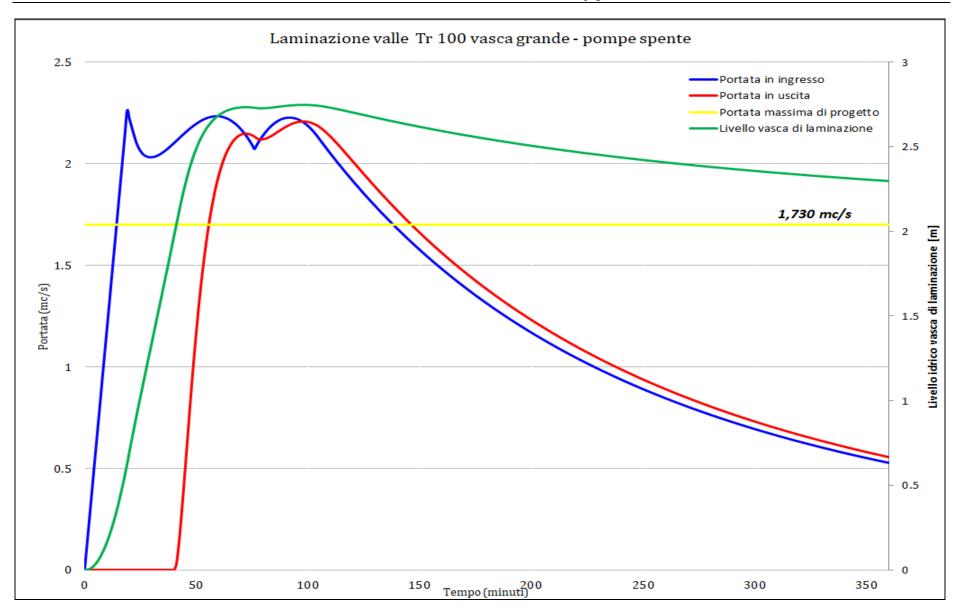


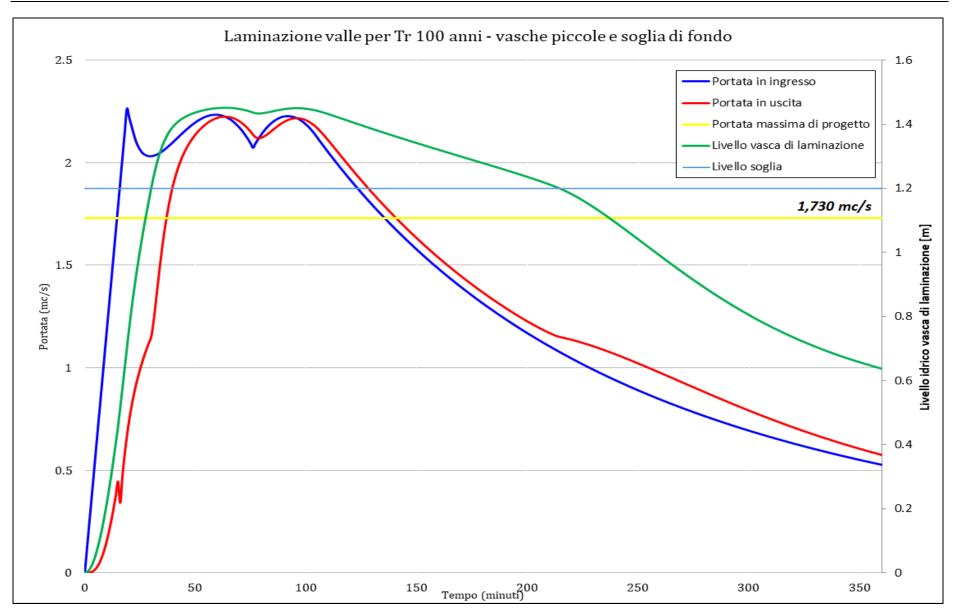


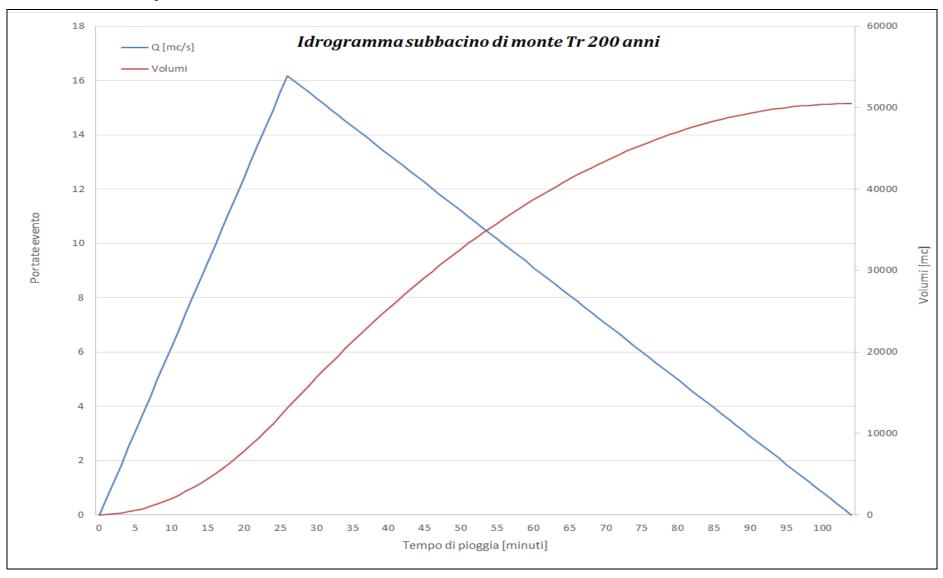


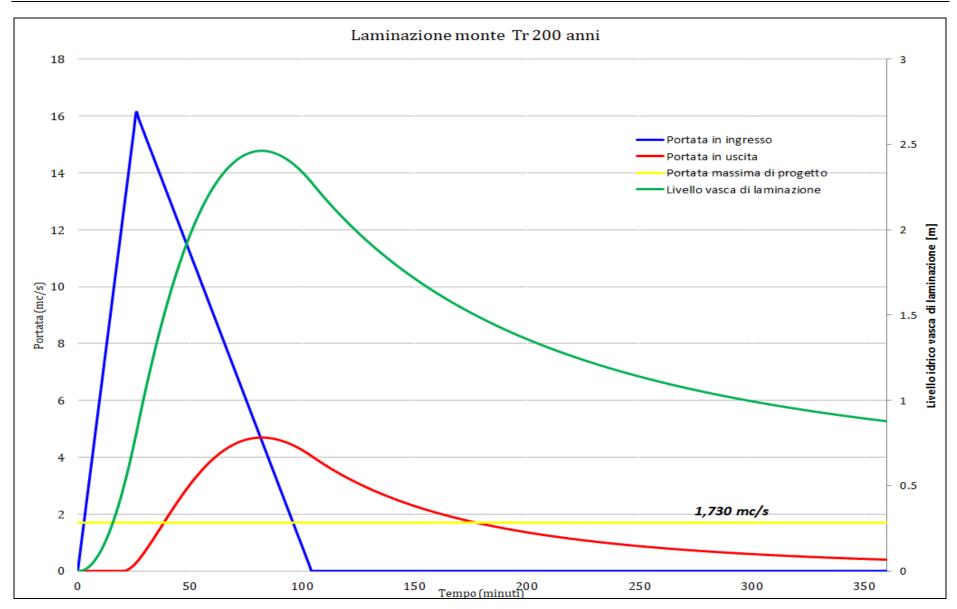

4.3 Laminazione delle piene tr 100 anni

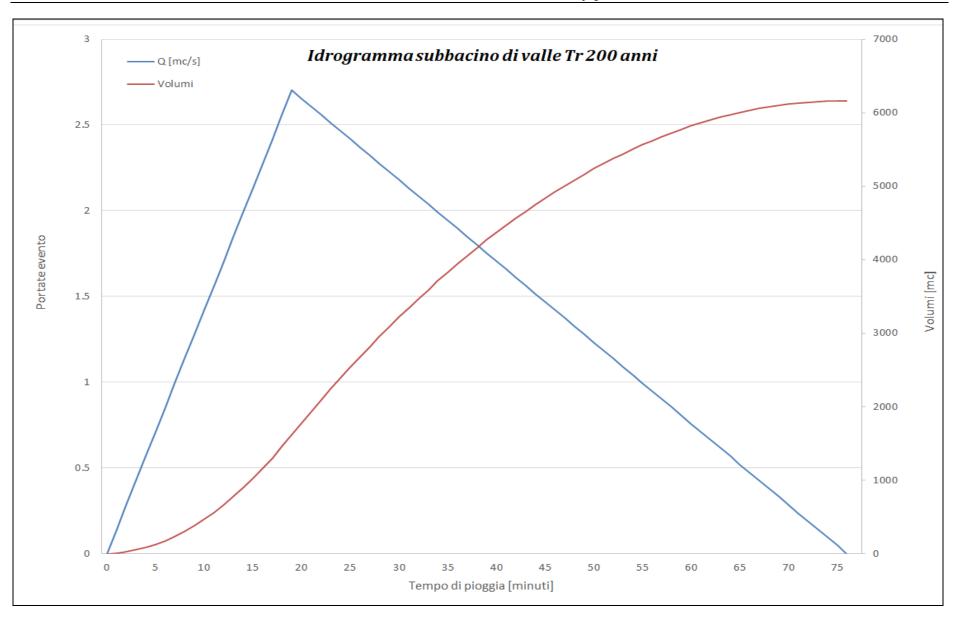


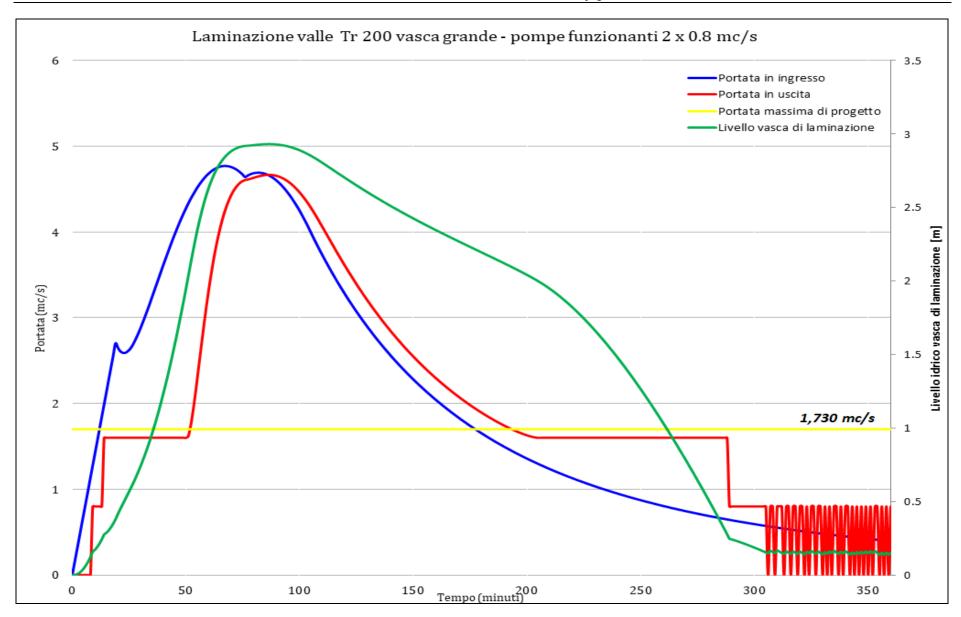


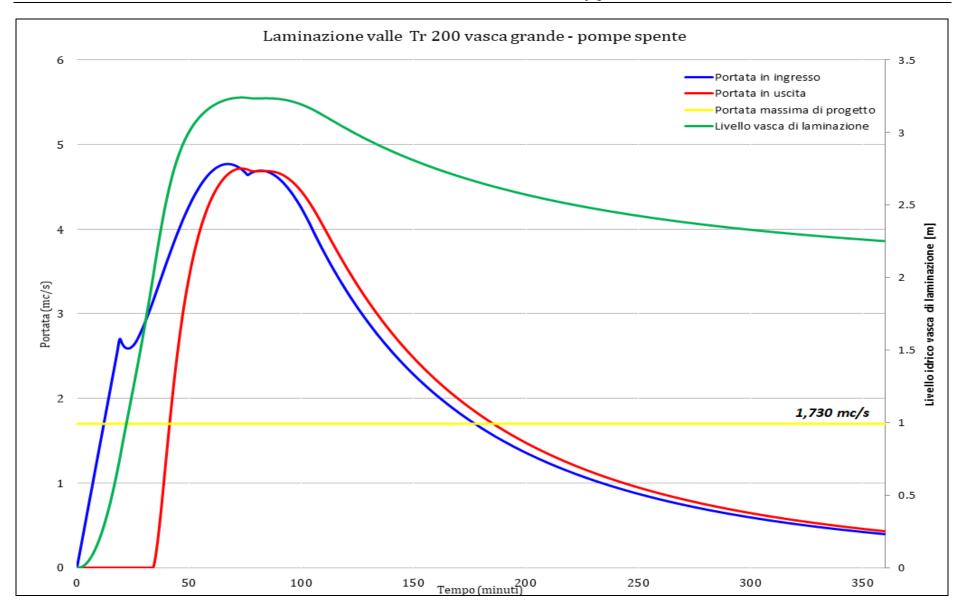


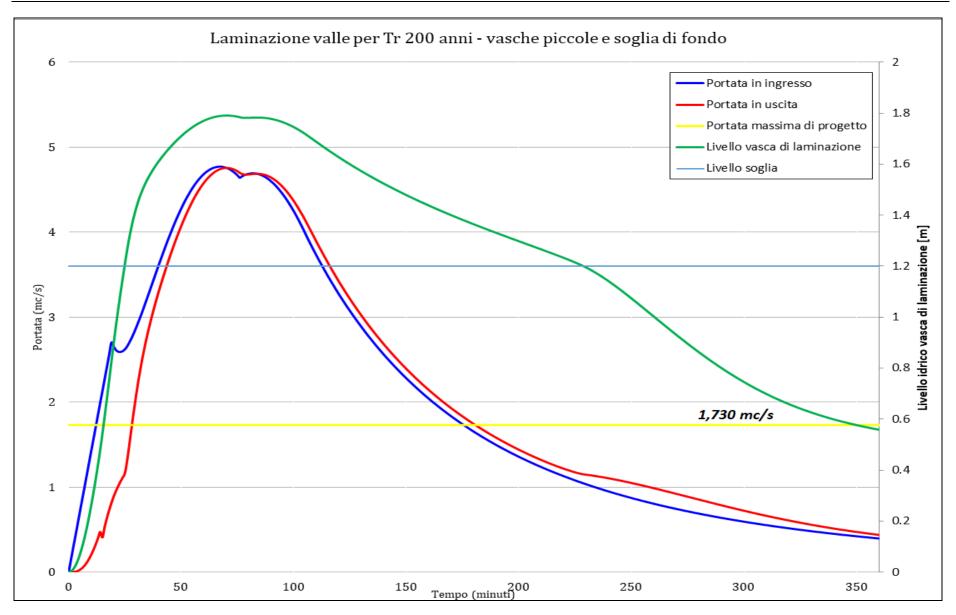





4.4 Laminazione delle piene tr 200 anni







4.5 Risultati della verifica idraulica

4.5.1 Eventi con tempo di ritorno dei 50 anni

Dall'analisi dei risultati delle modellazioni idrauliche vediamo che il sistema è in grado di smaltire in sicurezza le portate di piena relative ai 50 anni anche nell'ipotesi progettuale con soglia di fondo, vasche di dimensioni ridotte e senza stazioni di pompaggio.

4.5.2 Eventi con tempo di ritorno dei 100 anni

Con le stazioni di pompaggio in perfetta efficienza il sistema non va in crisi per l'evento centennale, la prima batteria di pompe attacca dopo circa 10 minuti la seconda batteria dopo 15 minuti dall'inizio dell'evento di piena al raggiungimento di soglie prestabilite. Il picco di piena di 1,68 mc/s si raggiunge dopo circa due ore e venti minuti.

Il sistema in progetto senza stazioni di pompaggio o in caso di guasto alle stazioni di pompaggio, va in crisi per le portate con tempo di ritorno superiore ai 100 anni determinando delle aree a pericolosità elevata (Hi3) nelle aree morfologicamente più depresse dell'abitato.

Un risultato molto interessante che emerge dal confronto dei risultati è che la differenza di volume delle vasche di valle delle due ipotesi progettuali non incide in maniera significativa sull'efficienza del sistema, in caso di malfunzionamento delle pompe le due soluzioni sono molto simili, quindi in termini di mitigazione della pericolosità intesa come deperimetrazione delle aree a pericolosità e rischio idraulico le due ipotesi progettuali sono praticamente equivalenti.

Entrando nel dettaglio dei risultati per le piene centennali le vasche di dimensioni maggiori hanno l'effetto di posticipare il picco di piena, infatti si inizia ad avere un deflusso dopo circa 40 minuti e il picco di piena lo si ha dopo circa un ora e mezzo dall'inizio dell'evento con una portata di picco di circa 2.20 mc/s, e una durata della crisi del sistema ovvero portate maggiori di quelle di progetto di circa un ora e 25 minuti, trascorso questo tempo il sistema è in grado di allontanare le portate di piena e la situazione torna alla normalità.

Con le vasche di dimensioni minori il deflusso verso il canale San Giovanni inizia subito dopo appena 5 minuti il picco (2.23 mc/s) si raggiunge dopo circa un ora, e la crisi del sistema dura circa un ora e 45 minuti.

4.5.3 Eventi con tempo di ritorno dei 200 anni.

Cime si può vedere dai grafici riportati nella pagina precedente, mentre la vasca di monte opera un importante opera di laminazione delle portate di piena smorzando il picco da oltre 16 mc/s a 4,7 mc/s, le vasche di valle hanno volumi modesti e non sono in grado di laminare in modo efficiente le portate relative ai tempi di ritorno dei 200 anni, si hanno quindi degli allagamenti e dei disagi con tutte e tre le ipotesi progettuali, l'unica cos che cambia è il tempo in cui il sistema riesce a smaltire le portate e tornare in condizioni di normalità, si passa da un tempo di circa 2 ore e venti minuti in caso di vasche grandi e pompe perfettamente efficienti o spente o non funzionanti, a un tempo di circa 2 ore e 30 in caso di ipotesi

progettuali con vasche piccole. Anche le portate di picco in uscita dal sistema non sono troppo diverse si passa da una portata di picco in uscita dalle vasche di valle di 4,67 mc/s in caso di vasche grandi e pompe perfettamente efficienti a una portata di picco di 4,76 mc/s in in caso di ipotesi progettuali con vasche piccole.

Questi risultati non devono sorprendere più di tanto perché in assenza di importanti volumi di laminazione anche a valle, il limite del sistema è sempre la massima portata che può essere allontanata dal Canale San Giovanni, che è limitata a 1,73 mc/s dal tratto in galleria in località sa Maddalena.

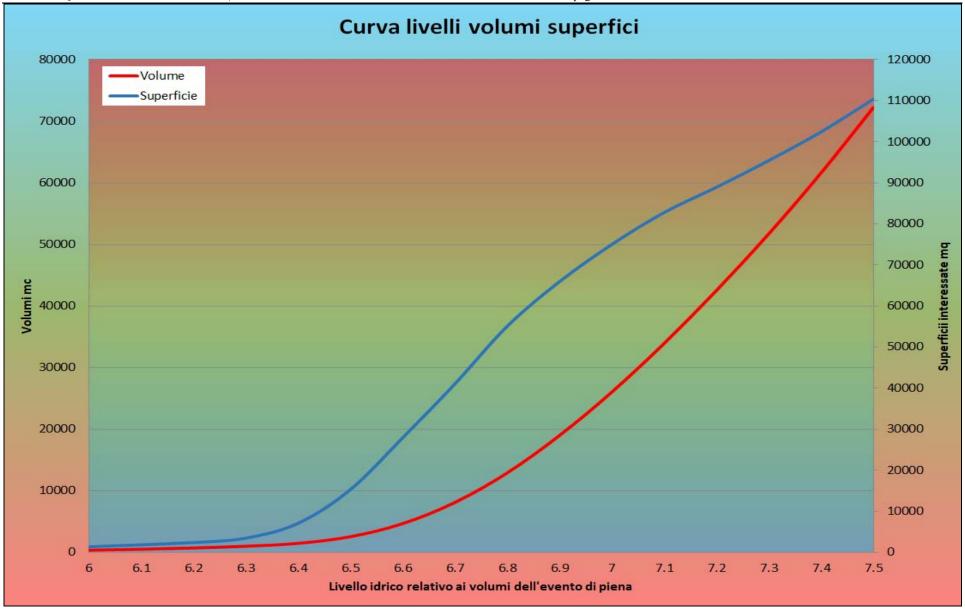
5 Compatibilità degli interventi in progetto e mitigazione del rischio idraulico

5.1 Mitigazione del rischio idraulico e valutazione del rischio residuo

Per valutare l'efficacia degli interventi previsti in progetto, si è ricostruita la curva Livelli Volumi Superfici, attraverso l'analisi del modello digitale del terreno dell'area potenzialmente interessate dagli allagamenti.

Se il sistema è in grado di smaltire completamente i volumi di piena le aree allagabili sono ovviamente nulle, se il sistema va in crisi per un determinato evento si stima il volume che non è in grado di smaltire il relativo livello idrico e la superficie delle aree potenzialmente allagabili.

Nel presente studio di compatibilità in particolare si sono valutati gli effetti della mitigazione idraulica fattibili dal punto di vista tecnico ed economico cioè nell'ipotesi progettuale con sistema costituito dalla vasca di laminazione di monte, vasche di valle senza sistema di pompaggio e di dimensioni ridotte e collegamento tra vasca di laminazione di monte e vasche di valle tramite tubazioni in cls, e gli effetti degli interventi realizzabili con il finanziamenti del primo stralcio progettuale, ovvero solo con la vasca di laminazione di monte e l'adeguamento dei canali esistenti e dell'immissione sul canale San Giovanni.


In estrema sintesi i risultati della mitigazione idraulica sono riassunti nell'Allegato G3:

- con gli interventi realizzabili con il finanziamento del primo stralcio riusciamo ad operare un importante mitigazione del rischio (la prima carta a sinistra della tavola), permangono solo delle piccole aree a pericolosità molto elevata nelle aree morfologicamente più depresse dell'abitato, per il resto abbiamo delle Hi3 e delle Hi2 appena più estese, ma la maggior parte dell'abitato è comunque affrancata dalla pericolosità idraulica e permangono solo le aree in Hi1 che sono determinate dalle fasce determinate con il criterio geomorfologico dal PSFF lungo l'asta del Fiume tirso che prescindono dai tempi di ritorno ed equivalgono dal punto di vista vincolistico alle Hi1. In questo caso si è valutato che il sistema riesca a laminare e d allontanare in sicurezza solo le portate del bacino di monte per il tempo di ritorno dei 50 anni , i volumi eccedenti le piene cinquantennali di monte, mentre non può esercitare alcuna laminazione o mitigazione sulle porate e sui volumi del bacino di valle, in estrema sintesi quindi si sono valutati i volumi non laminati:
 - per il tempo di ritorno dei 50 anni in 4200 mc a cui dalla curva "Volumi livelli superfici" corrisponde un livello di 6,62 m slmm e un area allagabile residua (Hi4), stimata in 30.500 mq;

- per il tempo di ritorno dei 100 anni in circa 13000 mc a cui dalla curva "Volumi livelli superfici" corrisponde un livello di 6,85 m slmm e un area allagabile residua (Hi3), stimata in 60.000 mq;
- per il tempo di ritorno dei 200 anni in circa 22000 mc a cui corrisponde un livello di circa 7,00 m slmm e un area allagabile residua (Hi2), stimata in 75.000 mq;
- con gli interventi completi previsti in progetto, nell'ipotesi vi vasche piccole e senza stazioni di pompaggio, si eliminano completamente le aree a pericolosità molto elevata (ultima carta sulla destra dell'Allegato G.3), permangono solo delle aree a pericolosità elevata e media nelle aree morfologicamente più depresse dell'abitato, la maggior parte dell'abitato è affrancata dalla pericolosità idraulica e permangono solo le aree in Hi1. In questo caso si è valutato che il sistema riesca a laminare e d allontanare in sicurezza solo le portate del bacino di monte per di ritorno dei 50 anni, le aree allagabili si sono determinate stimando i volumi eccedenti le piene cinquantennali, si sono valutati i volumi non laminati:
 - per il tempo di ritorno dei 100 anni in circa 8800 mc a cui dalla curva "Volumi livelli superfici" corrisponde un livello di 6,75 m slmm e un area allagabile residua (Hi3), stimata in 48.000 mq;
 - per il tempo di ritorno dei 200 anni in circa 18000 mc a cui corrisponde un livello di circa 6,90 m slmm e un area allagabile residua (Hi2), stimata in 66.000 mq;
- si è valutata anche una situazione intermedia in cui non sia possibile realizzare la vasca di laminazione di valle di raccordo tra il canale est e il Canale San Giovanni, i tale ipotesi i volumi non laminati sono così stimati:
 - per il tempo di ritorno dei 50 anni in circa 1500 mc a cui dalla curva "Volumi livelli superfici" corrisponde un livello di 6,05 m slmm e un area allagabile residua (Hi4), stimata in 1.600 mq;
 - per il tempo di ritorno dei 100 anni in circa 10300 mc a cui dalla curva "Volumi livelli superfici" corrisponde un livello di 6,75 m slmm e un area allagabile residua (Hi3), stimata in 48.000 mg;
 - per il tempo di ritorno dei 200 anni in circa 19500 mc a cui corrisponde un livello di circa 6,90 m slmm e un area allagabile residua (Hi2), stimata in 68.000 mq;

5.2 Compatibilità degli interventi in progetto e considerazioni conclusive.

Lo studio di compatibilità idraulica condotto ai sensi dell'art. 24 delle Norme di Attuazione del Piano di Assetto Idrogeologico, ha analizzato nel dettaglio le possibili alterazioni dei regimi idraulici collegate alla realizzazione "Interventi di mitigazione del Rischio Idrogeologico nel Comune di Oristano - Frazione di Sili".

Per quanto illustrato nel presente gli interventi in progetto ricadono integramente all'interno della aree a pericolosità idraulica molto elevata così come individuate nell'ambito dello "Studio di compatibilità idraulica e di compatibilità geologica e geotecnica ai sensi dell'art. 8 delle NA del PAI relativo a tutto il territorio comunale" del Comune di Oristano approvate con Delibera di Comitato Istituzionale dell'Autorità di Bacino Regionale n. 2 del 03.07.2018, detti interventi risultano ammissibili con quanto previsto dall'art. 27 delle NTA del PAI comma 1 lettera a "le opere e gli interventi idraulici per migliorare la difesa dalle alluvioni e la sicurezza delle aree interessate da dissesto idraulico" e lettera e "le opere urgenti degli organi di protezione civile o delle autorità idrauliche regionali competenti per la tutela di persone e beni in situazioni di rischio idraulico eccezionali".

Gli interventi in progetto risultano inoltre essere quindi in linea anche con le prescrizioni generali del PAI per gli interventi in aree a pericolosità idraulica, e con l'art. 1 comma 3 lettera e (impedire l'aumento delle situazioni di pericolo esistenti ...), e con l'art. 23 delle medesime norme "Prescrizioni generali per gli interventi ammessi nelle aree di pericolosità idrogeologica", e in particolare il comma 9 lettera d. prevede che gli interventi previsti siano tali da "non aumentare il pericolo idraulico con nuovi ostacoli al deflusso delle acque o con riduzioni significative della capacità di invasamento delle aree interessate";

Come illustrato nella *Tavole G.2: Area a pericolosità idraulica vigenti – ante operam* e nella *Tavola G.3:* Area a pericolosità idraulica di progetto – post operam, a seguito della realizzazione anche parziale degli interventi in progetto si ha una sostanziale diminuzione delle aree potenzialmente allagabili anche a seguito della parziale realizzazione degli interventi previsti nell'ambito del primo stralcio progettuale, senza trasferimento della pericolosità e rischio nelle aree limitrofe.

Anche nelle aree che permangono a pericolosità elevata e molto elevata (in caso di interventi parziali), nell'abitato di Silì si ha una sostanziale diminuzione del rischio e della Vulnerabilità delle persone legata alla velocità al battente idrico dell'evento di piena (secondo quanto previsto dalle Linee Guida dell'ISPRA e riportato nel comma 5ter dell'art. 8 delle NTA del PAI).

Gli interventi in progetto inoltre non incrementano in alcun modo nessuno dei fattori che concorrono a determinare il rischio specifico nella formulazione di cui al punto 2.1 del D.P.C.M. 29.9.1998.

Gli interventi in progetto hanno degli indubbi effetti positivi anche sul canale San Giovanni infatti differiscono nel tempo e smorzano i picchi degli eventi di piena che vengono collettati verso questa opera idraulica, dandole la possibilità di smaltire in sicurezza o almeno inmaniera più efficiente anche gli eventi più intensi.

Infine dall'analisi dei risultati si evince, come illustrato nelle immagini sottoriportate, come il nucleo storico dell'abitato di Silì si affranchi completamente dalla pericolosità idraulica con gli interventi previsti anche son il solo primo stralcio progettuale.

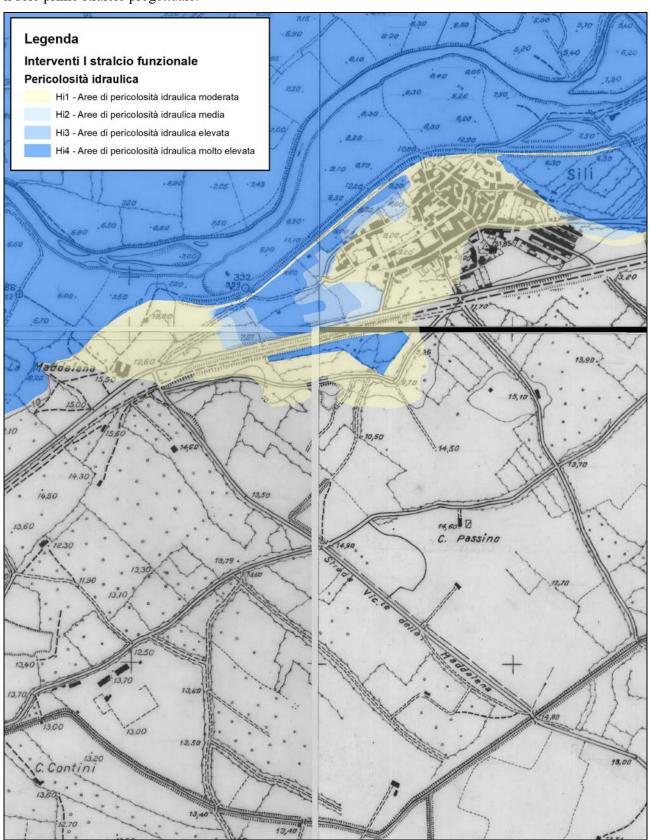


Figura 5.1: Aree allagabile a seguito degli interventi previsti con il primo stralcio su carte storiche del 1953

Figura 5.2: Aree allagabile a seguito degli interventi previsti con il primo stralcio su carte storiche del 1945

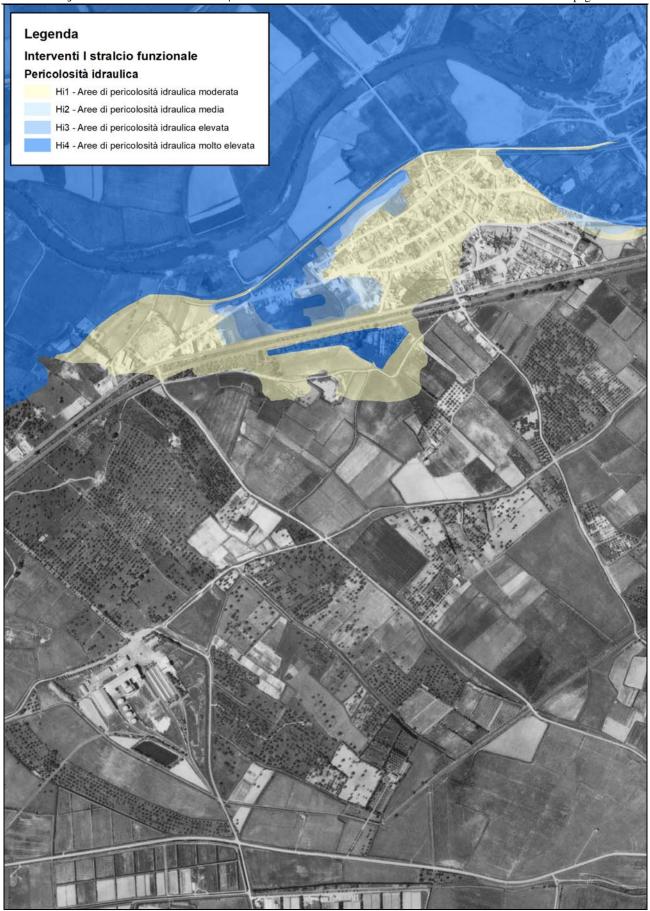


Figura 5.3: Aree allagabile a seguito degli interventi previsti con il primo stralcio su carte storiche del 1968